We derive sharp Adams inequalities for the Riesz and more general Riesz-like potentials on the whole of . As a consequence, we obtain sharp Moser–Trudinger inequalities for the critical Sobolev spaces , . These inequalities involve fractional Laplacians, higher order gradients, general homogeneous elliptic operators with constant coefficients, and general trace type Borel measures.
Fontana, L., Morpurgo, C. (2018). Sharp exponential integrability for critical Riesz potentials and fractional Laplacians on Rn. NONLINEAR ANALYSIS, 167, 85-122 [10.1016/j.na.2017.10.012].
Sharp exponential integrability for critical Riesz potentials and fractional Laplacians on Rn
Fontana, Luigi
;
2018
Abstract
We derive sharp Adams inequalities for the Riesz and more general Riesz-like potentials on the whole of . As a consequence, we obtain sharp Moser–Trudinger inequalities for the critical Sobolev spaces , . These inequalities involve fractional Laplacians, higher order gradients, general homogeneous elliptic operators with constant coefficients, and general trace type Borel measures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Fontana-Morpurgo-2018.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.