We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.

Brasco, L., Cinti, E., Vita, S. (2020). A quantitative stability estimate for the fractional Faber-Krahn inequality. JOURNAL OF FUNCTIONAL ANALYSIS, 279(3) [10.1016/j.jfa.2020.108560].

A quantitative stability estimate for the fractional Faber-Krahn inequality

Vita, S
2020

Abstract

We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1.
Articolo in rivista - Articolo scientifico
Fractional Laplacian; Stability of eigenvalues;
Stability of eigenvalues; Fractional Laplacian
English
10-apr-2020
2020
279
3
108560
reserved
Brasco, L., Cinti, E., Vita, S. (2020). A quantitative stability estimate for the fractional Faber-Krahn inequality. JOURNAL OF FUNCTIONAL ANALYSIS, 279(3) [10.1016/j.jfa.2020.108560].
File in questo prodotto:
File Dimensione Formato  
4_BrascoCintiVita.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/272851
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
Social impact