Here we show how to apply a recently introduced method based on the geometric interpretation of linear momentum of vortex lines to determine dynamical properties of a network of knots and links. To show how the method works and to prove its feasibility, we consider the evolution of quantum vortices governed by the Gross-Pitaevskii equation. Accurate estimates of the momentum of interacting and reconnecting vortex rings, links, and knots are determined. The method is of general validity and it proves particularly useful in practical situations where no analytical information is available. It can be easily adapted to situations where morphological information can be extracted from experimental or computational data, thus providing a powerful tool for real-time diagnostics of vortex filaments or other networks of filamentary structures.
Zuccher, S., Ricca, R. (2019). Momentum of vortex tangles by weighted area information. PHYSICAL REVIEW. E, 100(1) [10.1103/PhysRevE.100.011101].
Momentum of vortex tangles by weighted area information
Ricca Renzo
Secondo
2019
Abstract
Here we show how to apply a recently introduced method based on the geometric interpretation of linear momentum of vortex lines to determine dynamical properties of a network of knots and links. To show how the method works and to prove its feasibility, we consider the evolution of quantum vortices governed by the Gross-Pitaevskii equation. Accurate estimates of the momentum of interacting and reconnecting vortex rings, links, and knots are determined. The method is of general validity and it proves particularly useful in practical situations where no analytical information is available. It can be easily adapted to situations where morphological information can be extracted from experimental or computational data, thus providing a powerful tool for real-time diagnostics of vortex filaments or other networks of filamentary structures.File | Dimensione | Formato | |
---|---|---|---|
Zuccher-2019-Phys Rev E-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Altro
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.