The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.

Carija, A., Pinheiro, F., Pujols, J., Bras, I., Lazaro, D., Santambrogio, C., et al. (2019). Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. REDOX BIOLOGY, 22 [10.1016/j.redox.2019.101135].

Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity

Santambrogio C.;Grandori R.;Navarro S.;Ventura S.
2019

Abstract

The aggregation of α-synuclein (α-syn) into amyloid fibrils is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The mechanisms underlying the structural transition of soluble and innocuous α-syn to aggregated neurotoxic forms remains largely unknown. The disordered nature of α-syn has hampered the use of structure-based protein engineering approaches to elucidate the molecular determinants of this transition. The recent 3D structure of a pathogenic α-syn fibril provides a template for this kind of studies. The structure supports the NAC domain being a critical element in fibril formation, since it constitutes the core of the fibril, delineating a Greek-key motif. Here, we stapled the ends of this motif with a designed disulfide bond and evaluated its impact on the conformation, aggregation and toxicity of α-syn in different environments. The new covalent link biases the native structural ensemble of α-syn toward compact conformations, reducing the population of fully unfolded species. This conformational bias results in a strongly reduced fibril formation propensity both in the absence and in the presence of lipids and impedes the formation of neurotoxic oligomers. Our study does not support the Greek-key motif being already imprinted in early α-syn assemblies, discarding it as a druggable interface to prevent the initiation of fibrillation. In contrast, it suggests the stabilization of native, compact ensembles as a potential therapeutic strategy to avoid the formation of toxic species and to target the early stages of PD.
Articolo in rivista - Articolo scientifico
Amyloid; Disulfide bond; Parkinson's disease; Protein aggregation; α-synuclein;
Amyloid; Disulfide bond; Parkinson's disease; Protein aggregation; α-synuclein; Amino Acid Motifs; Amino Acid Sequence; Amyloid; Disulfides; Humans; Hydrophobic and Hydrophilic Interactions; Kinetics; Lipid Metabolism; Magnetic Resonance Spectroscopy; Mutation; Neurons; Parkinson Disease; Protein Aggregation, Pathological; Solubility; alpha-Synuclein; Protein Aggregates; Protein Conformation
English
2019
22
101135
reserved
Carija, A., Pinheiro, F., Pujols, J., Bras, I., Lazaro, D., Santambrogio, C., et al. (2019). Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. REDOX BIOLOGY, 22 [10.1016/j.redox.2019.101135].
File in questo prodotto:
File Dimensione Formato  
2019_Carija_RedoxBiol.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/270126
Citazioni
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
Social impact