Paleomagnetic and biostratigraphic data from the Al Azizia Formation of northwestern Libya, consisting of uppermost Middle Triassic/lowermost Upper Triassic limestones, shed new light on the latitudinal drift of Africa and Adria and related climatic changes. A characteristic component of magnetization carried by magnetite delineates paleomagnetic poles which are coincident with coeval poles from the Southern Alps. Data from this study and the literature are integrated, showing that relatively unrotated remnants of the Adria. margin like the Southern Alps (e.g., the Dolomites), Istria, Gargano, Apulia and Iblei moved in close conjunction with Africa since at least Permian times. A Permian-Cenozoic apparent polar wander (APW) curve for Africa/Adria is constructed. The paleolatitude trend for northern Libya calculated from this APW superposed to the zonal latitudinal bands of relative aridity and humidity typical of modern-day climate predicts that northern Libya drifted northwards from the equatorial belt to the and tropic during the Triassic, and crossed the humid subequatorial/arid subtropical boundary zone at Late Triassic times. This inference is fully supported by Permo-Triassic palynological and facies analysis from this study and the literature. We conclude that a zonal climate model coupled with paleomagnetically constrained paleogeographic reconstructions provides a powerful null hypothesis for understanding past climatic conditions. (C) 2001 Elsevier Science BN. All rights reserved.

Muttoni, G., Garzanti, E., Alfonsi, L., Cirilli, S., Germani, D., Lowrie, W. (2001). Motion of Africa and Adria since the Permian: Paleomagnetic and paleoclimatic constraints from northern Libya. EARTH AND PLANETARY SCIENCE LETTERS, 192(2), 159-174 [10.1016/S0012-821X(01)00439-3].

Motion of Africa and Adria since the Permian: Paleomagnetic and paleoclimatic constraints from northern Libya

GARZANTI, EDUARDO;
2001

Abstract

Paleomagnetic and biostratigraphic data from the Al Azizia Formation of northwestern Libya, consisting of uppermost Middle Triassic/lowermost Upper Triassic limestones, shed new light on the latitudinal drift of Africa and Adria and related climatic changes. A characteristic component of magnetization carried by magnetite delineates paleomagnetic poles which are coincident with coeval poles from the Southern Alps. Data from this study and the literature are integrated, showing that relatively unrotated remnants of the Adria. margin like the Southern Alps (e.g., the Dolomites), Istria, Gargano, Apulia and Iblei moved in close conjunction with Africa since at least Permian times. A Permian-Cenozoic apparent polar wander (APW) curve for Africa/Adria is constructed. The paleolatitude trend for northern Libya calculated from this APW superposed to the zonal latitudinal bands of relative aridity and humidity typical of modern-day climate predicts that northern Libya drifted northwards from the equatorial belt to the and tropic during the Triassic, and crossed the humid subequatorial/arid subtropical boundary zone at Late Triassic times. This inference is fully supported by Permo-Triassic palynological and facies analysis from this study and the literature. We conclude that a zonal climate model coupled with paleomagnetically constrained paleogeographic reconstructions provides a powerful null hypothesis for understanding past climatic conditions. (C) 2001 Elsevier Science BN. All rights reserved.
Articolo in rivista - Articolo scientifico
Libya; Triassic; paleomagnetism; palynology; Africa; Adriatic Plate
English
2001
192
2
159
174
none
Muttoni, G., Garzanti, E., Alfonsi, L., Cirilli, S., Germani, D., Lowrie, W. (2001). Motion of Africa and Adria since the Permian: Paleomagnetic and paleoclimatic constraints from northern Libya. EARTH AND PLANETARY SCIENCE LETTERS, 192(2), 159-174 [10.1016/S0012-821X(01)00439-3].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/269387
Citazioni
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 107
Social impact