Cluster-Weighted Modeling is a flexible statistical framework for modeling local relationships in heterogeneous populations on the basis of weighted combinations of local models. Besides the traditional approach based on Gaussian assumptions, here we consider Cluster Weighted Modeling based on Student-t distributions. In this paper we present an EM algorithm for parameter estimation in Cluster-Weighted models according to the maximum likelihood approach. © 2012 Springer-Verlag Berlin Heidelberg.

Ingrassia, S., Minotti, S., Incarbone, G. (2012). An EM algorithm for the Student-t Cluster-Weighted Modeling. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, J. Kunze (a cura di), Challenges at the Interface of Data Analysis, Computer Science, and Optimization (pp. 13-21). Kluwer Academic Publishers [10.1007/978-3-642-24466-7-2].

An EM algorithm for the Student-t Cluster-Weighted Modeling

MINOTTI, SIMONA CATERINA;
2012

Abstract

Cluster-Weighted Modeling is a flexible statistical framework for modeling local relationships in heterogeneous populations on the basis of weighted combinations of local models. Besides the traditional approach based on Gaussian assumptions, here we consider Cluster Weighted Modeling based on Student-t distributions. In this paper we present an EM algorithm for parameter estimation in Cluster-Weighted models according to the maximum likelihood approach. © 2012 Springer-Verlag Berlin Heidelberg.
Capitolo o saggio
Cluster-Weighted Modeling, EM algorithm
English
Challenges at the Interface of Data Analysis, Computer Science, and Optimization
Gaul, W; Geyer-Schulz, A; Schmidt-Thieme, L; Kunze, J
2012
978-364224465-0
Kluwer Academic Publishers
13
21
Ingrassia, S., Minotti, S., Incarbone, G. (2012). An EM algorithm for the Student-t Cluster-Weighted Modeling. In W. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, J. Kunze (a cura di), Challenges at the Interface of Data Analysis, Computer Science, and Optimization (pp. 13-21). Kluwer Academic Publishers [10.1007/978-3-642-24466-7-2].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/26707
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact