This paper deals with the convergence in Mallows metric for classical multivariate kernel distribution function estimators. We prove the convergence in Mallows metric of a locally orientated kernel smooth estimator belonging to the class of sample smoothing estimators. The consistency follows for the smoothed bootstrap for regular functions of the marginal means. Two simple simulation studies show how the smoothed versions of the bootstrap give better results than the classical technique.

DE MARTINI, D., Rapallo, F. (2008). On multivariate smoothed bootstrap consistency. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 138(6), 1828-1835 [10.1016/j.jspi.2007.06.035].

On multivariate smoothed bootstrap consistency

DE MARTINI, DANIELE;
2008

Abstract

This paper deals with the convergence in Mallows metric for classical multivariate kernel distribution function estimators. We prove the convergence in Mallows metric of a locally orientated kernel smooth estimator belonging to the class of sample smoothing estimators. The consistency follows for the smoothed bootstrap for regular functions of the marginal means. Two simple simulation studies show how the smoothed versions of the bootstrap give better results than the classical technique.
Articolo in rivista - Articolo scientifico
mallows metric; locally adaptive kernel estimator; bootstrap confidence intervals
English
2008
138
6
1828
1835
none
DE MARTINI, D., Rapallo, F. (2008). On multivariate smoothed bootstrap consistency. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 138(6), 1828-1835 [10.1016/j.jspi.2007.06.035].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/26478
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact