We introduce a generalization of the finite polylogarithms, in characteristic p, which depends on a parameter α. The special case was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials are related to the powers of and derive some consequences.

Avitabile, M., Mattarei, S. (2021). Generalized finite polylogarithms. GLASGOW MATHEMATICAL JOURNAL, 63(1 January 2021), 66-80 [10.1017/S0017089520000026].

Generalized finite polylogarithms

Avitabile, M;Mattarei, S
2021

Abstract

We introduce a generalization of the finite polylogarithms, in characteristic p, which depends on a parameter α. The special case was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials are related to the powers of and derive some consequences.
Articolo in rivista - Articolo scientifico
finite polylogarithm; Laguerre polynomial; functional equation
English
19-feb-2020
2021
63
1 January 2021
66
80
reserved
Avitabile, M., Mattarei, S. (2021). Generalized finite polylogarithms. GLASGOW MATHEMATICAL JOURNAL, 63(1 January 2021), 66-80 [10.1017/S0017089520000026].
File in questo prodotto:
File Dimensione Formato  
Avitabile-2021-Glasgow Mathematical Journal-VoR.pdf

Solo gestori archivio

Descrizione: articolo su rivista
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 187.94 kB
Formato Adobe PDF
187.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/262562
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact