The HyPlant imaging spectrometer is a high-performance airborne instrument consisting of two sensor modules. The DUAL module records hyperspectral data in the spectral range from 400-2500 nm, which is useful to derive biochemical and structural plant properties. In parallel, the FLUO module acquires data in the red and near infrared range (670-780 nm), with a distinctly higher spectral sampling interval and finer spectral resolution. The technical specifications of HyPlant FLUO allow for the retrieval of sun-induced chlorophyll fluorescence (SIF), a small signal emitted by plants, which is directly linked to their photosynthetic e°ciency. The combined use of both HyPlant modules opens up new opportunities in plant science. The processing of HyPlant image data, however, is a rather complex procedure, and, especially for the FLUO module, a precise characterization and calibration of the sensor is of utmost importance. The presented study gives an overview of this unique high-performance imaging spectrometer, introduces an automatized processing chain, and gives an overview of the different processing steps that must be executed to generate the final products, namely top of canopy (TOC) radiance, TOC reflectance, reflectance indices and SIF maps

Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., et al. (2019). The high-performance airborne imaging spectrometer HyPlant-from raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. REMOTE SENSING, 11(23) [10.3390/rs11232760].

The high-performance airborne imaging spectrometer HyPlant-from raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain

Celesti M.
;
Cogliati S.
;
Colombo R.
;
2019

Abstract

The HyPlant imaging spectrometer is a high-performance airborne instrument consisting of two sensor modules. The DUAL module records hyperspectral data in the spectral range from 400-2500 nm, which is useful to derive biochemical and structural plant properties. In parallel, the FLUO module acquires data in the red and near infrared range (670-780 nm), with a distinctly higher spectral sampling interval and finer spectral resolution. The technical specifications of HyPlant FLUO allow for the retrieval of sun-induced chlorophyll fluorescence (SIF), a small signal emitted by plants, which is directly linked to their photosynthetic e°ciency. The combined use of both HyPlant modules opens up new opportunities in plant science. The processing of HyPlant image data, however, is a rather complex procedure, and, especially for the FLUO module, a precise characterization and calibration of the sensor is of utmost importance. The presented study gives an overview of this unique high-performance imaging spectrometer, introduces an automatized processing chain, and gives an overview of the different processing steps that must be executed to generate the final products, namely top of canopy (TOC) radiance, TOC reflectance, reflectance indices and SIF maps
Articolo in rivista - Articolo scientifico
Airborne imaging spectrometer; Automatized processing chain; FLEX; Fluorescence explorer; Hyperspectral; HyPlant; SIF; SIF retrieval; Sun-induced chlorophyll fluorescence
English
2019
11
23
2760
open
Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., et al. (2019). The high-performance airborne imaging spectrometer HyPlant-from raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. REMOTE SENSING, 11(23) [10.3390/rs11232760].
File in questo prodotto:
File Dimensione Formato  
10281-259952.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 17.72 MB
Formato Adobe PDF
17.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/259952
Citazioni
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 52
Social impact