We study the asymptotic behaviour of the nodal length of random 2d-spherical harmonics fℓ of high degree ℓ → ∞, i.e. the length of their zero set f-1ℓ (0). It is found that the nodal lengths are asymptotically equivalent, in the L2-sense, to the "gsample trispectrum", i.e., the integral of H4(fℓ(x)), the fourth-order Hermite polynomial of the values of fℓ. A particular by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.

Marinucci, D., Rossi, M., Wigman, I. (2020). The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56(1), 374-390 [10.1214/19-AIHP964].

The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics

Rossi, M;
2020

Abstract

We study the asymptotic behaviour of the nodal length of random 2d-spherical harmonics fℓ of high degree ℓ → ∞, i.e. the length of their zero set f-1ℓ (0). It is found that the nodal lengths are asymptotically equivalent, in the L2-sense, to the "gsample trispectrum", i.e., the integral of H4(fℓ(x)), the fourth-order Hermite polynomial of the values of fℓ. A particular by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.
Articolo in rivista - Articolo scientifico
Nodal length; Central Limit Theorem; Random Spherical Harmonics
English
3-feb-2020
2020
56
1
374
390
none
Marinucci, D., Rossi, M., Wigman, I. (2020). The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56(1), 374-390 [10.1214/19-AIHP964].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/258252
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 21
Social impact