We study the asymptotic behaviour of the nodal length of random 2d-spherical harmonics fℓ of high degree ℓ → ∞, i.e. the length of their zero set f-1ℓ (0). It is found that the nodal lengths are asymptotically equivalent, in the L2-sense, to the "gsample trispectrum", i.e., the integral of H4(fℓ(x)), the fourth-order Hermite polynomial of the values of fℓ. A particular by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.

Marinucci, D., Rossi, M., Wigman, I. (2020). The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56(1), 374-390 [10.1214/19-AIHP964].

The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics

Rossi, M;
2020

Abstract

We study the asymptotic behaviour of the nodal length of random 2d-spherical harmonics fℓ of high degree ℓ → ∞, i.e. the length of their zero set f-1ℓ (0). It is found that the nodal lengths are asymptotically equivalent, in the L2-sense, to the "gsample trispectrum", i.e., the integral of H4(fℓ(x)), the fourth-order Hermite polynomial of the values of fℓ. A particular by-product of this is a Quantitative Central Limit Theorem (in Wasserstein distance) for the nodal length, in the high energy limit.
Articolo in rivista - Articolo scientifico
Berry's cancellation; Nodal length; Quantitative central limit theorem; Sample trispectrum; Spherical harmonics;
Nodal length; Central Limit Theorem; Random Spherical Harmonics
English
3-feb-2020
2020
56
1
374
390
open
Marinucci, D., Rossi, M., Wigman, I. (2020). The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 56(1), 374-390 [10.1214/19-AIHP964].
File in questo prodotto:
File Dimensione Formato  
Marinucci-2020-Ann Inst H Poincaré Probab Statist-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Licenza open access specifica dell’editore
Dimensione 236.05 kB
Formato Adobe PDF
236.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/258252
Citazioni
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 26
Social impact