Room temperature ionic liquids are nowadays the most appealing research target in the field of liquid electrolytes for lithium batteries, due to their high thermal stability, ionic conductivity and wide electrochemical windows. The cation structure of such solvents strictly influences their physical and chemical properties, in particular the viscosity and conductivity. In this paper we report on the preparation and characterization of a complete series of solutions between lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the promising N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (PY1,2O1) ionic liquid. A wide molality range has been explored in order to identify the optimal compositions in terms of conductivity and electrochemical stability. Our thermal results show that the solutions are amorphous independently on the LiTFSI content. Up to salt concentration of 0.4 mol kg-1 the solutions have a very low viscosity (η ∼ 36 cP), a high ionic conductivity, even at temperatures below 0 °C, and a good electrochemical stability. Cations transport numbers ranging between 0.05 and 0.39 have been determined as a function of LiTFSI content. The combination of these properties makes the PY1,2O1-based solutions potentially attractive liquid electrolytes for lithium batteries

Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., et al. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. JOURNAL OF POWER SOURCES, 194(1), 45-50 [10.1016/j.jpowsour.2008.12.013].

A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries

Mustarelli, P
;
2009

Abstract

Room temperature ionic liquids are nowadays the most appealing research target in the field of liquid electrolytes for lithium batteries, due to their high thermal stability, ionic conductivity and wide electrochemical windows. The cation structure of such solvents strictly influences their physical and chemical properties, in particular the viscosity and conductivity. In this paper we report on the preparation and characterization of a complete series of solutions between lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the promising N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (PY1,2O1) ionic liquid. A wide molality range has been explored in order to identify the optimal compositions in terms of conductivity and electrochemical stability. Our thermal results show that the solutions are amorphous independently on the LiTFSI content. Up to salt concentration of 0.4 mol kg-1 the solutions have a very low viscosity (η ∼ 36 cP), a high ionic conductivity, even at temperatures below 0 °C, and a good electrochemical stability. Cations transport numbers ranging between 0.05 and 0.39 have been determined as a function of LiTFSI content. The combination of these properties makes the PY1,2O1-based solutions potentially attractive liquid electrolytes for lithium batteries
Articolo in rivista - Articolo scientifico
Electrolytes; Ionic liquids; LiTFSI; Lithium batteries; Pyrrolidinium;
English
2009
194
1
45
50
none
Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., et al. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. JOURNAL OF POWER SOURCES, 194(1), 45-50 [10.1016/j.jpowsour.2008.12.013].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/257048
Citazioni
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 90
Social impact