Uncovering the mechanism of low-temperature protonic conduction in highly dense nanostructured metal oxides opens the possibility to exploit the application of simple ceramic electrolytes in proton exchange fuel cells, overcoming the drawbacks related to the use of polymeric membranes. High proton conducting, highly dense (relative density 94 vol%) TiO2 samples are prepared by a fast pressure-assisted sintering method, which allows leaving behind an interconnected network of open nanoporosity. Solid-state 1H NMR is used to characterize the presence of strongly associated water confined in the nanopores and hydroxyl moieties bonded to the pores walls, providing a model to explain the unusually high protonic conductivity. At the lowest temperatures (T < 55 °C) protons hop between confined water molecules, according to a Grotthuss mechanism. The resulting conductivity values are however much higher than those of liquid water, indicating a significant increase in the charge carriers concentration. At higher temperatures (up to 450 °C) unexpected proton conduction is still present, thanks to the persistence of hydroxyl groups, derived from water chemisorption, which still produce protons by ionization. The phenomenon is strongly dependent on grain size, and not explicable by simple geometric brick-layer models, suggesting that the enhanced ionization could rely on space charge region effects

Tredici, I., Maglia, F., Ferrara, C., Mustarelli, P., Anselmi-Tamburini, U. (2014). Mechanism of Low-Temperature Protonic Conductivity in Bulk, High Density, Nanometric Titanium Oxide. ADVANCED FUNCTIONAL MATERIALS, 24(32), 5137-5146 [10.1002/adfm.201400420].

Mechanism of Low-Temperature Protonic Conductivity in Bulk, High Density, Nanometric Titanium Oxide

Ferrara, C;Mustarelli, P;
2014

Abstract

Uncovering the mechanism of low-temperature protonic conduction in highly dense nanostructured metal oxides opens the possibility to exploit the application of simple ceramic electrolytes in proton exchange fuel cells, overcoming the drawbacks related to the use of polymeric membranes. High proton conducting, highly dense (relative density 94 vol%) TiO2 samples are prepared by a fast pressure-assisted sintering method, which allows leaving behind an interconnected network of open nanoporosity. Solid-state 1H NMR is used to characterize the presence of strongly associated water confined in the nanopores and hydroxyl moieties bonded to the pores walls, providing a model to explain the unusually high protonic conductivity. At the lowest temperatures (T < 55 °C) protons hop between confined water molecules, according to a Grotthuss mechanism. The resulting conductivity values are however much higher than those of liquid water, indicating a significant increase in the charge carriers concentration. At higher temperatures (up to 450 °C) unexpected proton conduction is still present, thanks to the persistence of hydroxyl groups, derived from water chemisorption, which still produce protons by ionization. The phenomenon is strongly dependent on grain size, and not explicable by simple geometric brick-layer models, suggesting that the enhanced ionization could rely on space charge region effects
Articolo in rivista - Articolo scientifico
nanoporosity; nanostructured titania; pressure-assisted rapid sintering; proton transport; solid-state NMR
English
2014
24
32
5137
5146
none
Tredici, I., Maglia, F., Ferrara, C., Mustarelli, P., Anselmi-Tamburini, U. (2014). Mechanism of Low-Temperature Protonic Conductivity in Bulk, High Density, Nanometric Titanium Oxide. ADVANCED FUNCTIONAL MATERIALS, 24(32), 5137-5146 [10.1002/adfm.201400420].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/256857
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
Social impact