Mirror therapy (MT) has been proposed as an effective rehabilitative strategy to alleviate pain symptoms in amputees with phantom limb pain (PLP). However, establishing the neural correlates associated with MT therapy have been challenging given that it is difficult to administer the therapy effectively within a magnetic resonance imaging (MRI) scanner environment. To characterize the functional organization of cortical regions associated with this rehabilitative strategy, we have developed a combined behavioral and functional neuroimaging protocol that can be applied in participants with a leg amputation. This novel approach allows participants to undergo MT within the MRI scanner environment by viewing real-time video images captured by a camera. The images are viewed by the participant through a system of mirrors and a monitor that the participant views while lying on the scanner bed. In this manner, functional changes in cortical areas of interest (e.g., sensorimotor cortex) can be characterized in response to the direct application of MT.
Saleh Velez, F., Pinto, C., Bailin, E., Münger, M., Ellison, A., Costa, B., et al. (2019). Real Time Video Projection in an MRI for the Characterization of the Neural Correlates Associated with Mirror Therapy treatment for Phantom Limb Pain. JOURNAL OF VISUALIZED EXPERIMENTS, 146 [10.3791/58800].
Real Time Video Projection in an MRI for the Characterization of the Neural Correlates Associated with Mirror Therapy treatment for Phantom Limb Pain.
Bolognini, N;
2019
Abstract
Mirror therapy (MT) has been proposed as an effective rehabilitative strategy to alleviate pain symptoms in amputees with phantom limb pain (PLP). However, establishing the neural correlates associated with MT therapy have been challenging given that it is difficult to administer the therapy effectively within a magnetic resonance imaging (MRI) scanner environment. To characterize the functional organization of cortical regions associated with this rehabilitative strategy, we have developed a combined behavioral and functional neuroimaging protocol that can be applied in participants with a leg amputation. This novel approach allows participants to undergo MT within the MRI scanner environment by viewing real-time video images captured by a camera. The images are viewed by the participant through a system of mirrors and a monitor that the participant views while lying on the scanner bed. In this manner, functional changes in cortical areas of interest (e.g., sensorimotor cortex) can be characterized in response to the direct application of MT.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.