We find a lower bound to the size of finite groups detecting a given word in the free group. More precisely we construct a word wn of length n in non-abelian free groups with the property that wn is the identity on all finite quotients of size ̃ n2/3 or less. This improves on a previous result of Bou- Rabee and McReynolds quantifying the lower bound of the residual finiteness of free groups. © 2010 American Mathematical Society.
Kassabov, M., Matucci, F. (2011). Bounding the residual finiteness of free groups. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(7), 2281-2286 [10.1090/S0002-9939-2011-10967-5].
Bounding the residual finiteness of free groups
Matucci, F
2011
Abstract
We find a lower bound to the size of finite groups detecting a given word in the free group. More precisely we construct a word wn of length n in non-abelian free groups with the property that wn is the identity on all finite quotients of size ̃ n2/3 or less. This improves on a previous result of Bou- Rabee and McReynolds quantifying the lower bound of the residual finiteness of free groups. © 2010 American Mathematical Society.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
KM-residual-finiteness-accepted.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
300.65 kB
Formato
Adobe PDF
|
300.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.