We find a lower bound to the size of finite groups detecting a given word in the free group. More precisely we construct a word wn of length n in non-abelian free groups with the property that wn is the identity on all finite quotients of size ̃ n2/3 or less. This improves on a previous result of Bou- Rabee and McReynolds quantifying the lower bound of the residual finiteness of free groups. © 2010 American Mathematical Society.

Kassabov, M., Matucci, F. (2011). Bounding the residual finiteness of free groups. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(7), 2281-2286 [10.1090/S0002-9939-2011-10967-5].

Bounding the residual finiteness of free groups

Matucci, F
2011

Abstract

We find a lower bound to the size of finite groups detecting a given word in the free group. More precisely we construct a word wn of length n in non-abelian free groups with the property that wn is the identity on all finite quotients of size ̃ n2/3 or less. This improves on a previous result of Bou- Rabee and McReynolds quantifying the lower bound of the residual finiteness of free groups. © 2010 American Mathematical Society.
Articolo in rivista - Articolo scientifico
Free group; Identities in a group; Residually finite group; Mathematics (all); Applied Mathematics
English
2011
139
7
2281
2286
open
Kassabov, M., Matucci, F. (2011). Bounding the residual finiteness of free groups. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(7), 2281-2286 [10.1090/S0002-9939-2011-10967-5].
File in questo prodotto:
File Dimensione Formato  
KM-residual-finiteness-accepted.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 300.65 kB
Formato Adobe PDF
300.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/254741
Citazioni
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
Social impact