WHAT WE ALREADY KNOW ABOUT THIS TOPIC: After pulmonary artery occlusion (mimicking a pulmonary embolism), perfusion is redistributed to the rest of the lung tissue, but the distribution of ventilation is uncertain. WHAT THIS ARTICLE TELLS US THAT IS NEW: Data from anesthetized pigs (uninjured lungs) indicate that the perfusion is redistributed as suspected. Similarly, ventilation is redistributed from nonperfused to perfused lung tissue. This limits the increase in dead space and is accompanied by less density in the occluded lung. BACKGROUND: Acute unilateral pulmonary arterial occlusion causes ventilation-perfusion mismatch of the affected lung area. A diversion of ventilation from nonperfused to perfused lung areas, limiting the increase in dead space, has been described. The hypothesis was that the occlusion of a distal branch of the pulmonary artery would cause local redistribution of ventilation and changes in regional lung densitometry as assessed with quantitative computed tomography. METHODS: In eight healthy, anesthetized pigs (18.5 ± 3.8 kg) ventilated with constant ventilatory settings, respiratory mechanics, arterial blood gases, and quantitative computed tomography scans were recorded at baseline and 30 min after the inflation of the balloon of a pulmonary artery catheter. Regional (left vs. right lung and perfused vs. nonperfused area) quantitative computed tomography was performed. RESULTS: The balloon always occluded a branch of the left pulmonary artery perfusing approximately 30% of lung tissue. Physiologic dead space increased (0.37 ± 0.17 vs. 0.43 ± 0.17, P = 0.005), causing an increase in PaCO2 (39.8 [35.2 to 43.0] vs. 41.8 [37.5 to 47.1] mmHg, P = 0.008) and reduction in pH (7.46 [7.42 to 7.50] vs. 7.42 [7.38 to 7.47], P = 0.008). Respiratory system compliance was reduced (24.4 ± 4.2 vs. 22.8 ± 4.8 ml · cm H2O, P = 0.028), and the reduction was more pronounced in the left hemithorax. Quantitative analysis of the nonperfused lung area revealed a significant reduction in lung density (-436 [-490 to -401] vs. -478 [-543 to -474] Hounsfield units, P = 0.016), due to a reduction in lung tissue (90 ± 23 vs. 81 ± 22 g, P < 0.001) and an increase in air volume (70 ± 22 vs. 82 ± 26 ml, P = 0.022). CONCLUSIONS: Regional pulmonary vascular occlusion is associated with a diversion of ventilation from nonperfused to perfused lung areas. This compensatory mechanism effectively limits ventilation perfusion mismatch. Quantitative computed tomography documented acute changes in lung densitometry after pulmonary vascular occlusion. In particular, the nonperfused lung area showed an increase in air volume and reduction in tissue mass, resulting in a decreased lung density.

Langer, T., Castagna, V., Brusatori, S., Santini, A., Mauri, T., Zanella, A., et al. (2019). Short-term Physiologic Consequences of Regional Pulmonary Vascular Occlusion in Pigs. ANESTHESIOLOGY, 131(2), 336-343 [10.1097/ALN.0000000000002735].

Short-term Physiologic Consequences of Regional Pulmonary Vascular Occlusion in Pigs

Langer, T
;
2019

Abstract

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: After pulmonary artery occlusion (mimicking a pulmonary embolism), perfusion is redistributed to the rest of the lung tissue, but the distribution of ventilation is uncertain. WHAT THIS ARTICLE TELLS US THAT IS NEW: Data from anesthetized pigs (uninjured lungs) indicate that the perfusion is redistributed as suspected. Similarly, ventilation is redistributed from nonperfused to perfused lung tissue. This limits the increase in dead space and is accompanied by less density in the occluded lung. BACKGROUND: Acute unilateral pulmonary arterial occlusion causes ventilation-perfusion mismatch of the affected lung area. A diversion of ventilation from nonperfused to perfused lung areas, limiting the increase in dead space, has been described. The hypothesis was that the occlusion of a distal branch of the pulmonary artery would cause local redistribution of ventilation and changes in regional lung densitometry as assessed with quantitative computed tomography. METHODS: In eight healthy, anesthetized pigs (18.5 ± 3.8 kg) ventilated with constant ventilatory settings, respiratory mechanics, arterial blood gases, and quantitative computed tomography scans were recorded at baseline and 30 min after the inflation of the balloon of a pulmonary artery catheter. Regional (left vs. right lung and perfused vs. nonperfused area) quantitative computed tomography was performed. RESULTS: The balloon always occluded a branch of the left pulmonary artery perfusing approximately 30% of lung tissue. Physiologic dead space increased (0.37 ± 0.17 vs. 0.43 ± 0.17, P = 0.005), causing an increase in PaCO2 (39.8 [35.2 to 43.0] vs. 41.8 [37.5 to 47.1] mmHg, P = 0.008) and reduction in pH (7.46 [7.42 to 7.50] vs. 7.42 [7.38 to 7.47], P = 0.008). Respiratory system compliance was reduced (24.4 ± 4.2 vs. 22.8 ± 4.8 ml · cm H2O, P = 0.028), and the reduction was more pronounced in the left hemithorax. Quantitative analysis of the nonperfused lung area revealed a significant reduction in lung density (-436 [-490 to -401] vs. -478 [-543 to -474] Hounsfield units, P = 0.016), due to a reduction in lung tissue (90 ± 23 vs. 81 ± 22 g, P < 0.001) and an increase in air volume (70 ± 22 vs. 82 ± 26 ml, P = 0.022). CONCLUSIONS: Regional pulmonary vascular occlusion is associated with a diversion of ventilation from nonperfused to perfused lung areas. This compensatory mechanism effectively limits ventilation perfusion mismatch. Quantitative computed tomography documented acute changes in lung densitometry after pulmonary vascular occlusion. In particular, the nonperfused lung area showed an increase in air volume and reduction in tissue mass, resulting in a decreased lung density.
Articolo in rivista - Articolo scientifico
Hypocapnia; Bronchoconstriction; CT scan; experimental model
English
2019
131
2
336
343
reserved
Langer, T., Castagna, V., Brusatori, S., Santini, A., Mauri, T., Zanella, A., et al. (2019). Short-term Physiologic Consequences of Regional Pulmonary Vascular Occlusion in Pigs. ANESTHESIOLOGY, 131(2), 336-343 [10.1097/ALN.0000000000002735].
File in questo prodotto:
File Dimensione Formato  
Langer T_Anesthesiology_2019.pdf

Solo gestori archivio

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 592.01 kB
Formato Adobe PDF
592.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/254647
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
Social impact