Let ℒ be a line bundle on a smooth curve C of genus g ≥ 2 and let W ⊂ H0(ℒ) be a subspace of dimension r + 1, in this paper we study the natural map μW: W ⊗ H0(ωC) → H0(ℒ⊗ωC). Let D ⊂ G(r + 1, H0(ℒ)) be the locus where μWfails to be surjective: we prove that, if C is not hyperelliptic of genus g ≥ 3, D is an irreducible and reduced divisor on G(r + 1, H0(ℒ)) for any r ≥ 3, and for r = 2 if the curve C is not trigonal.

Brivio, S. (2002). On the degeneracy locus of a map of vector bundles on Grassamannian varieties. MATHEMATISCHE NACHRICHTEN, 244(1), 26-37 [10.1002/1522-2616(200210)244:1<26::AID-MANA26>3.0.CO;2-L].

On the degeneracy locus of a map of vector bundles on Grassamannian varieties

Brivio, S
2002

Abstract

Let ℒ be a line bundle on a smooth curve C of genus g ≥ 2 and let W ⊂ H0(ℒ) be a subspace of dimension r + 1, in this paper we study the natural map μW: W ⊗ H0(ωC) → H0(ℒ⊗ωC). Let D ⊂ G(r + 1, H0(ℒ)) be the locus where μWfails to be surjective: we prove that, if C is not hyperelliptic of genus g ≥ 3, D is an irreducible and reduced divisor on G(r + 1, H0(ℒ)) for any r ≥ 3, and for r = 2 if the curve C is not trigonal.
Articolo in rivista - Articolo scientifico
Grassmannians; Vector bundles
English
2002
244
1
26
37
none
Brivio, S. (2002). On the degeneracy locus of a map of vector bundles on Grassamannian varieties. MATHEMATISCHE NACHRICHTEN, 244(1), 26-37 [10.1002/1522-2616(200210)244:1<26::AID-MANA26>3.0.CO;2-L].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/254338
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact