The grand challenges of contemporary fundamental physics-dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem-all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.

Barack, L., Cardoso, V., Nissanke, S., Sotiriou, T., Askar, A., Belczynski, C., et al. (2019). Black holes, gravitational waves and fundamental physics: A roadmap. CLASSICAL AND QUANTUM GRAVITY, 36(14) [10.1088/1361-6382/ab0587].

Black holes, gravitational waves and fundamental physics: A roadmap

Colpi, Monica;Sesana, Alberto;Bonetti, Matteo;Dotti, Massimo;Gerosa, Davide;Mangiagli, Alberto;Sharan Salafia, Om;
2019

Abstract

The grand challenges of contemporary fundamental physics-dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem-all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
Articolo in rivista - Review Essay
birth and evolution of black holes; black holes; fundamental physics; gravitational waves; gravitational-wave astronomy; source modelling;
gravitational waves; gravitational-wave astronomy; source modelling; black holes; fundamental physics; birth and evolution of black holes
English
2019
36
14
143001
none
Barack, L., Cardoso, V., Nissanke, S., Sotiriou, T., Askar, A., Belczynski, C., et al. (2019). Black holes, gravitational waves and fundamental physics: A roadmap. CLASSICAL AND QUANTUM GRAVITY, 36(14) [10.1088/1361-6382/ab0587].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/253891
Citazioni
  • Scopus 601
  • ???jsp.display-item.citation.isi??? 468
Social impact