AIM: The key role of the kidney in the regulation of body fluids and acid-base status is well known. Nonetheless, urine analysis has not received great attention in critically ill patients, likely due to the common practice of only analyzing 24-hour collected specimens. We hypothesized that the kidney may react more rapidly to minimal hemodynamic and acid-base status variations than can be assessed by a 24-hour analysis. Accordingly, we developed and tested a urine analyzer, allowing quasi-continuous urinary analysis. METHODS: A novel analyzer (Kidney INstant monitorinG--K.IN.G) was developed that allows non-invasive, quasi-continuous analysis of urine pH, sodium, chloride, potassium and ammonium levels. Analytic measurement accuracy was calculated for urine samples of patients admitted to ICUs as well as medical staff, using standard techniques as references. For clinical investigation, approximately 200 patients were connected to the analyzer after ICU admission until discharge. Clinically relevant parameters were recorded. Here, three cases are presented. RESULTS: For each analytic parameter, the accuracy of measurements obtained with the K.IN.G analyzer appeared to be acceptable as compared to those of the reference techniques. In case 1, urine analysis revealed increased urinary sodium and chloride excretion strictly in parallel with mean arterial pressure, and increased ammonium excretion which was associated with moderate hypercapnia. Case 2 showed increases in urinary pH and sodium and chloride levels following awakening after sedation suspension. In case 3, urine analysis revealed an impairment of renal concentrative power, which was associated with hypovolemia. CONCLUSION: The K.IN.G analyzer, allowing quasi-continuous monitoring of urinary pH and principal electrolyte levels, may represent a novel tool for clinical and research purposes
Caironi, P., Langer, T., Taccone, P., Bruzzone, P., De Chiara, S., Vagginelli, F., et al. (2010). Kidney instant monitoring (K.IN.G) : a new analyzer to monitor kidney function. MINERVA ANESTESIOLOGICA, 76(5), 316-324.
Kidney instant monitoring (K.IN.G) : a new analyzer to monitor kidney function
Langer, T;
2010
Abstract
AIM: The key role of the kidney in the regulation of body fluids and acid-base status is well known. Nonetheless, urine analysis has not received great attention in critically ill patients, likely due to the common practice of only analyzing 24-hour collected specimens. We hypothesized that the kidney may react more rapidly to minimal hemodynamic and acid-base status variations than can be assessed by a 24-hour analysis. Accordingly, we developed and tested a urine analyzer, allowing quasi-continuous urinary analysis. METHODS: A novel analyzer (Kidney INstant monitorinG--K.IN.G) was developed that allows non-invasive, quasi-continuous analysis of urine pH, sodium, chloride, potassium and ammonium levels. Analytic measurement accuracy was calculated for urine samples of patients admitted to ICUs as well as medical staff, using standard techniques as references. For clinical investigation, approximately 200 patients were connected to the analyzer after ICU admission until discharge. Clinically relevant parameters were recorded. Here, three cases are presented. RESULTS: For each analytic parameter, the accuracy of measurements obtained with the K.IN.G analyzer appeared to be acceptable as compared to those of the reference techniques. In case 1, urine analysis revealed increased urinary sodium and chloride excretion strictly in parallel with mean arterial pressure, and increased ammonium excretion which was associated with moderate hypercapnia. Case 2 showed increases in urinary pH and sodium and chloride levels following awakening after sedation suspension. In case 3, urine analysis revealed an impairment of renal concentrative power, which was associated with hypovolemia. CONCLUSION: The K.IN.G analyzer, allowing quasi-continuous monitoring of urinary pH and principal electrolyte levels, may represent a novel tool for clinical and research purposesFile | Dimensione | Formato | |
---|---|---|---|
Caironi_P_ma_2010.pdf
Solo gestori archivio
Dimensione
277.74 kB
Formato
Adobe PDF
|
277.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.