Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM’s toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017–2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards

Marchetti, S., Hassan, S., Shetaya, W., El-Mekawy, A., Mohamed, E., Mohammed, A., et al. (2019). Seasonal Variation in the Biological Effects of PM2.5 from Greater Cairo. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(20) [10.3390/ijms20204970].

Seasonal Variation in the Biological Effects of PM2.5 from Greater Cairo

Marchetti, Sara
Primo
;
Bengalli, Rossella;Colombo, Anita;Gualtieri, Maurizio;Mantecca, Paride
Ultimo
2019

Abstract

Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM’s toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017–2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards
Articolo in rivista - Articolo scientifico
air pollution; PM2.5; toxicity; lung; in vitro systems
English
Marchetti, S., Hassan, S., Shetaya, W., El-Mekawy, A., Mohamed, E., Mohammed, A., et al. (2019). Seasonal Variation in the Biological Effects of PM2.5 from Greater Cairo. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(20) [10.3390/ijms20204970].
File in questo prodotto:
File Dimensione Formato  
10281-245063.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri
Marchetti et al.,(2019) IJMS.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/245063
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
Social impact