Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their "central engine" remains unknown. Considering a binary of magnetized neutron stars and solving the Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ∼1012G to produce an ordered poloidal field of ∼1015G along the black hole spin axis, within a half-opening angle of ∼30°, which may naturally launch a relativistic jet. The broad consistency of our ab initio calculations with SGRB observations shows that the merger of magnetized neutron stars can provide the basic physical conditions for the central engine of SGRBs

Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., Aloy, M. (2011). The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. THE ASTROPHYSICAL JOURNAL LETTERS, 732(1 PART II) [10.1088/2041-8205/732/1/L6].

The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts

Giacomazzo, B;
2011

Abstract

Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their "central engine" remains unknown. Considering a binary of magnetized neutron stars and solving the Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ∼1012G to produce an ordered poloidal field of ∼1015G along the black hole spin axis, within a half-opening angle of ∼30°, which may naturally launch a relativistic jet. The broad consistency of our ab initio calculations with SGRB observations shows that the merger of magnetized neutron stars can provide the basic physical conditions for the central engine of SGRBs
Articolo in rivista - Articolo scientifico
magnetohydrodynamics, binary neutron stars, gravitational waves
English
2011
732
1 PART II
L6
open
Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., Aloy, M. (2011). The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. THE ASTROPHYSICAL JOURNAL LETTERS, 732(1 PART II) [10.1088/2041-8205/732/1/L6].
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/242540
Citazioni
  • Scopus 369
  • ???jsp.display-item.citation.isi??? 356
Social impact