Protein charge-state distributions (CSDs) in electrospray-ionization mass spectrometry (ESI-MS) represent a sensitive tool to probe different conformational states. We describe here the effect of trifluoroethanol (TFE) on cytochrome c equilibrium unfolding at different pH by nano-ESI-MS. While even low concentrations of TFE destabilize the protein native structure at low pH, a TFE content of 2.5%-5% is found to favor cyt c folding at pH approximately 7. Furthermore, we perform comparison of CSDs obtained by time-of-flight (ToF) and Fourier-transform-ion- cyclotron-resonance (FT-ICR) mass analyzers. To this purpose, we analyze spectra of cyt c in the presence of different kind of denaturants. In particular, experiments with 1-propanol suggest that also by FT-ICR-MS, as previously observed on an ESI-ToF instrument, CSDs do not appear to be controlled by the solvent surface tension as predicted by the Rayleigh-charge model. Moreover, there is general good agreement in conformational effects revealed by the different instruments under several buffer conditions. Nevertheless, the ToF instrument appears to discriminate better between unfolded and partially unfolded forms.

Youhnovski, N., Matecko, I., Samalikova, M., Grandori, R. (2005). Characterisation of cytochrome c unfolding by nano-electrospray-ionization and Time of Flight- Fouriertransform-ion cyclotron resonance- mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY, 11(5), 519-524 [10.1255/ejms.730].

Characterisation of cytochrome c unfolding by nano-electrospray-ionization and Time of Flight- Fouriertransform-ion cyclotron resonance- mass spectrometry

GRANDORI, RITA
2005

Abstract

Protein charge-state distributions (CSDs) in electrospray-ionization mass spectrometry (ESI-MS) represent a sensitive tool to probe different conformational states. We describe here the effect of trifluoroethanol (TFE) on cytochrome c equilibrium unfolding at different pH by nano-ESI-MS. While even low concentrations of TFE destabilize the protein native structure at low pH, a TFE content of 2.5%-5% is found to favor cyt c folding at pH approximately 7. Furthermore, we perform comparison of CSDs obtained by time-of-flight (ToF) and Fourier-transform-ion- cyclotron-resonance (FT-ICR) mass analyzers. To this purpose, we analyze spectra of cyt c in the presence of different kind of denaturants. In particular, experiments with 1-propanol suggest that also by FT-ICR-MS, as previously observed on an ESI-ToF instrument, CSDs do not appear to be controlled by the solvent surface tension as predicted by the Rayleigh-charge model. Moreover, there is general good agreement in conformational effects revealed by the different instruments under several buffer conditions. Nevertheless, the ToF instrument appears to discriminate better between unfolded and partially unfolded forms.
Articolo in rivista - Articolo scientifico
Protein folding, folding intermediates, hydrophobic effect, electrostatic effect, secondary, tertiary protein structure
English
mag-2005
11
5
519
524
none
Youhnovski, N., Matecko, I., Samalikova, M., Grandori, R. (2005). Characterisation of cytochrome c unfolding by nano-electrospray-ionization and Time of Flight- Fouriertransform-ion cyclotron resonance- mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY, 11(5), 519-524 [10.1255/ejms.730].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/2357
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact