Let mu be an invariant measure on a regular orbit in a compact Lie group or in a Lie algebra. We prove sharp L(p) - L(q) estimates for the convolution operators defined through mu. We also obtain similar results for the related Radon transform on the Lie algebra

Ricci, F., Travaglini, G. (1995). L^p-L^q estimates for orbital measures and Radon transforms on compact Lie groups and Lie algebras. JOURNAL OF FUNCTIONAL ANALYSIS, 129(1), 132-147 [10.1006/jfan.1995.1045].

L^p-L^q estimates for orbital measures and Radon transforms on compact Lie groups and Lie algebras

TRAVAGLINI, GIANCARLO
1995

Abstract

Let mu be an invariant measure on a regular orbit in a compact Lie group or in a Lie algebra. We prove sharp L(p) - L(q) estimates for the convolution operators defined through mu. We also obtain similar results for the related Radon transform on the Lie algebra
Articolo in rivista - Articolo scientifico
orbital measures
English
1995
129
1
132
147
none
Ricci, F., Travaglini, G. (1995). L^p-L^q estimates for orbital measures and Radon transforms on compact Lie groups and Lie algebras. JOURNAL OF FUNCTIONAL ANALYSIS, 129(1), 132-147 [10.1006/jfan.1995.1045].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/23258
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
Social impact