We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.

Castellano, I., Giordano Bruno, A. (2017). Algebraic entropy in locally linearly compact vector spaces. In M. Fontana, S. Frisch, S. Glaz, F. Tartarone, P. Zanardo (a cura di), Rings, Polynomials, and Modules (pp. 103-127). Springer International Publishing [10.1007/978-3-319-65874-2_6].

Algebraic entropy in locally linearly compact vector spaces

Castellano, I;
2017

Abstract

We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.
Capitolo o saggio
Algebraic dynamical system; Algebraic entropy; Continuous endomorphism; Continuous linear transformation; Linearly compact vector space; Locally linearly compact vector space;
English
Rings, Polynomials, and Modules
Fontana, M; Frisch, S; Glaz, S; Tartarone, F; Zanardo, P
2017
978-3-319-65872-8
Springer International Publishing
103
127
Castellano, I., Giordano Bruno, A. (2017). Algebraic entropy in locally linearly compact vector spaces. In M. Fontana, S. Frisch, S. Glaz, F. Tartarone, P. Zanardo (a cura di), Rings, Polynomials, and Modules (pp. 103-127). Springer International Publishing [10.1007/978-3-319-65874-2_6].
reserved
File in questo prodotto:
File Dimensione Formato  
Ent-llcIRIS.pdf

Solo gestori archivio

Dimensione 317.54 kB
Formato Adobe PDF
317.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/231598
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
Social impact