In this paper we characterize the closed invariant subspaces for the (*-)multiplier operator of the quaternionic space of slice L 2 functions. As a consequence, we obtain the innerouter factorization theorem for the quaternionic Hardy space on the unit ball and we provide a characterization of quaternionic outer functions in terms of cyclicity
Monguzzi, A., Sarfatti, G. (2018). Shift invariant subspaces of slice L^2 functions. ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA, 43, 1045-1061 [10.5186/aasfm.2018.4366].
Shift invariant subspaces of slice L^2 functions
Monguzzi, A;
2018
Abstract
In this paper we characterize the closed invariant subspaces for the (*-)multiplier operator of the quaternionic space of slice L 2 functions. As a consequence, we obtain the innerouter factorization theorem for the quaternionic Hardy space on the unit ball and we provide a characterization of quaternionic outer functions in terms of cyclicityFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2018 - Monguzzi & Sarfatti - Shift Invariant Subspaces of Slice L^2 Functions.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
239.56 kB
Formato
Adobe PDF
|
239.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.