In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws , 2(db(Dβ) , dσ) → Ws , 2(db(Dβ) , dσ) if and only if 0≤s2 where Ws . 2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws , p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm

Monguzzi, A., Peloso, M. (2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains. INTEGRAL EQUATIONS AND OPERATOR THEORY, 89(3), 315-344 [10.1007/s00020-017-2405-7].

Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains

Monguzzi, A;
2017

Abstract

In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws , 2(db(Dβ) , dσ) → Ws , 2(db(Dβ) , dσ) if and only if 0≤s2 where Ws . 2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws , p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm
Articolo in rivista - Articolo scientifico
Hardy spaces; Szego kernel; Szego projection; Worm domain
English
ott-2017
2017
89
3
315
344
reserved
Monguzzi, A., Peloso, M. (2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains. INTEGRAL EQUATIONS AND OPERATOR THEORY, 89(3), 315-344 [10.1007/s00020-017-2405-7].
File in questo prodotto:
File Dimensione Formato  
2017 - Sharp estimates for the Szego projection on model worm domains.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 318.05 kB
Formato Adobe PDF
318.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/231552
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
Social impact