In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws , 2(db(Dβ) , dσ) → Ws , 2(db(Dβ) , dσ) if and only if 0≤s2 where Ws . 2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws , p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-norm
Monguzzi, A., Peloso, M. (2017). Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains. INTEGRAL EQUATIONS AND OPERATOR THEORY, 89(3), 315-344 [10.1007/s00020-017-2405-7].
Sharp Estimates for the Szegő Projection on the Distinguished Boundary of Model Worm Domains
Monguzzi, A;
2017
Abstract
In this paper we study the regularity of the Szegő projection on Lebesgue and Sobolev spaces on the distinguished boundary of the unbounded model worm domain Dβ. We denote by db(Dβ) the distinguished boundary of Dβ and define the corresponding Hardy space H2(Dβ). This can be identified with a closed subspace of L2(db(Dβ) , dσ) , that we denote by H2(db(Dβ)) , where dσ is the naturally induced measure on db(Dβ). The orthogonal Hilbert space projection P: L2(db(Dβ) , dσ) → H2(db(Dβ)) is called the Szegő projection on the distinguished boundary. We prove that P, initially defined on the dense subspace L2∩ Lp(db(Dβ) , dσ) extends to a bounded operator P: Lp(db(Dβ) , dσ) → Lp(db(Dβ) , dσ) if and only if 21+p<21-νβ where νβ=π2β- Furthermore, we also prove that P defines a bounded operator P: Ws , 2(db(Dβ) , dσ) → Ws , 2(db(Dβ) , dσ) if and only if 0≤s2 where Ws . 2(db(Dβ) , dσ) denotes the Sobolev space of order s and underlying L2-norm. Finally, we prove a necessary condition for the boundedness of P on Ws , p(db(Dβ) , dσ) , p∈ (1 , ∞) , the Sobolev space of order s and underlying Lp-normFile | Dimensione | Formato | |
---|---|---|---|
2017 - Sharp estimates for the Szego projection on model worm domains.pdf
Solo gestori archivio
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
318.05 kB
Formato
Adobe PDF
|
318.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.