In this paper we investigate generalized theta divisors Θr in the moduli spaces UC(r,r) of semistable vector bundles on a curve C of genus 2. We provide a desingularization Φ of Θr in terms of a projective bundle π:P(V)→UC(r−1,r) which parametrizes extensions of stable vector bundles on the base by OC. Then, we study the composition of Φ with the well known theta map θ. We prove that, when it is restricted to the general fiber of π, we obtain a linear embedding.

Brivio, S., Favale, F. (2019). Genus 2 curves and generalized theta divisors. BULLETIN DES SCIENCES MATHEMATIQUES, 155, 112-140 [10.1016/j.bulsci.2019.05.002].

Genus 2 curves and generalized theta divisors

Brivio, S
;
Favale, FF
2019

Abstract

In this paper we investigate generalized theta divisors Θr in the moduli spaces UC(r,r) of semistable vector bundles on a curve C of genus 2. We provide a desingularization Φ of Θr in terms of a projective bundle π:P(V)→UC(r−1,r) which parametrizes extensions of stable vector bundles on the base by OC. Then, we study the composition of Φ with the well known theta map θ. We prove that, when it is restricted to the general fiber of π, we obtain a linear embedding.
Articolo in rivista - Articolo scientifico
Moduli spaces; Semistable vector bundles; Theta divisors;
Moduli space of vector bundles, theta divisors
English
2019
155
112
140
partially_open
Brivio, S., Favale, F. (2019). Genus 2 curves and generalized theta divisors. BULLETIN DES SCIENCES MATHEMATIQUES, 155, 112-140 [10.1016/j.bulsci.2019.05.002].
File in questo prodotto:
File Dimensione Formato  
Genus2CurvesAndGeneralizedThetaDivisors_SUBTO_BSM_v1.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 368.52 kB
Formato Adobe PDF
368.52 kB Adobe PDF Visualizza/Apri
Genus 2 curves and generalized theta divisors - published.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 482.34 kB
Formato Adobe PDF
482.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/229488
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact