Between 5 and 6 million years ago, during the so-called Messinian salinity crisis, the Mediterranean basin became a giant salt repository. The possibility of abrupt and kilometre-scale sea-level changes during this extreme event is debated. Messinian evaporites could signify either deep- or shallow-marine deposits, and ubiquitous erosional surfaces could indicate either subaerial or submarine features. Significant and fast reductions in sea level unload the lithosphere, which can increase the production and eruption of magma. Here we calculate variations in surface load associated with the Messinian salinity crisis and compile the available time constraints for pan-Mediterranean magmatism. We show that scenarios involving a kilometre-scale drawdown of sea level imply a phase of net overall lithospheric unloading at a time that appears synchronous with a magmatic pulse from the pan-Mediterranean igneous provinces. We verify the viability of a mechanistic link between unloading and magmatism using numerical modelling of decompression partial mantle melting and dyke formation in response to surface load variations. We conclude that the Mediterranean magmatic record provides an independent validation of the controversial kilometre-scale evaporative drawdown and sheds new light on the sensitivity of magmatic systems to the surface forcing.
Sternai, P., Caricchi, L., Garcia-Castellanos, D., Jolivet, L., Sheldrake, T., Castelltort, S. (2017). Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. NATURE GEOSCIENCE, 10(10), 783-787 [10.1038/ngeo3032].
Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis
Sternai, Pietro
Primo
;
2017
Abstract
Between 5 and 6 million years ago, during the so-called Messinian salinity crisis, the Mediterranean basin became a giant salt repository. The possibility of abrupt and kilometre-scale sea-level changes during this extreme event is debated. Messinian evaporites could signify either deep- or shallow-marine deposits, and ubiquitous erosional surfaces could indicate either subaerial or submarine features. Significant and fast reductions in sea level unload the lithosphere, which can increase the production and eruption of magma. Here we calculate variations in surface load associated with the Messinian salinity crisis and compile the available time constraints for pan-Mediterranean magmatism. We show that scenarios involving a kilometre-scale drawdown of sea level imply a phase of net overall lithospheric unloading at a time that appears synchronous with a magmatic pulse from the pan-Mediterranean igneous provinces. We verify the viability of a mechanistic link between unloading and magmatism using numerical modelling of decompression partial mantle melting and dyke formation in response to surface load variations. We conclude that the Mediterranean magmatic record provides an independent validation of the controversial kilometre-scale evaporative drawdown and sheds new light on the sensitivity of magmatic systems to the surface forcing.File | Dimensione | Formato | |
---|---|---|---|
Sternai et al., 2017.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
969.53 kB
Formato
Adobe PDF
|
969.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.