We present the essential tools to deal with virtual element method (VEM) for the approximation of solutions of partial differential equations in mixed form. Functional spaces, degrees of freedom, projectors and differential operators are described emphasizing how to build them in a virtual element framework and for a general approximation order. To achieve this goal, it was necessary to make a deep analysis on polynomial spaces and decompositions. We exploit such “bricks” to construct virtual element approximations of Stokes, Darcy and Navier–Stokes problems and we provide a series of examples to numerically verify the theoretical behaviour of high-order VEM.

Dassi, F., Vacca, G. (2020). Bricks for the mixed high-order virtual element method: Projectors and differential operators. APPLIED NUMERICAL MATHEMATICS, 155, 140-159 [10.1016/j.apnum.2019.03.014].

### Bricks for the mixed high-order virtual element method: Projectors and differential operators

#### Abstract

We present the essential tools to deal with virtual element method (VEM) for the approximation of solutions of partial differential equations in mixed form. Functional spaces, degrees of freedom, projectors and differential operators are described emphasizing how to build them in a virtual element framework and for a general approximation order. To achieve this goal, it was necessary to make a deep analysis on polynomial spaces and decompositions. We exploit such “bricks” to construct virtual element approximations of Stokes, Darcy and Navier–Stokes problems and we provide a series of examples to numerically verify the theoretical behaviour of high-order VEM.
##### Scheda breve Scheda completa Scheda completa (DC)
Articolo in rivista - Articolo scientifico
High-order; Mixed problems; Polygonal meshes; Projectors; Virtual element method; Numerical Analysis; Computational Mathematics; Applied Mathematics
English
3-apr-2019
2020
155
140
159
none
Dassi, F., Vacca, G. (2020). Bricks for the mixed high-order virtual element method: Projectors and differential operators. APPLIED NUMERICAL MATHEMATICS, 155, 140-159 [10.1016/j.apnum.2019.03.014].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/10281/228115`
• 36
• 30