Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables. Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility. Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.

Carrara, A., Crosta, G., Frattini, P. (2008). Comparing models of debris-flow susceptibility in the alpine environment. GEOMORPHOLOGY, 93(3-4), 353-378 [10.1016/j.geomorph.2006.10.033].

Comparing models of debris-flow susceptibility in the alpine environment

CROSTA, GIOVANNI;FRATTINI, PAOLO
2008

Abstract

Debris-flows are widespread in Val di Fassa (Trento Province, Eastern Italian Alps) where they constitute one of the most dangerous gravity-induced surface processes. From a large set of environmental characteristics and a detailed inventory of debris flows, we developed five models to predict location of debris-flow source areas. The models differ in approach (statistical vs. physically-based) and type of terrain unit of reference (slope unit vs. grid cell). In the statistical models, a mix of several environmental factors classified areas with different debris-flow susceptibility; however, the factors that exert a strong discriminant power reduce to conditions of high slope-gradient, pasture or no vegetation cover, availability of detrital material, and active erosional processes. Since slope and land use are also used in the physically-based approach, all model results are largely controlled by the same leading variables. Overlaying susceptibility maps produced by the different methods (statistical vs. physically-based) for the same terrain unit of reference (grid cell) reveals a large difference, nearly 25% spatial mismatch. The spatial discrepancy exceeds 30% for susceptibility maps generated by the same method (discriminant analysis) but different terrain units (slope unit vs. grid cell). The size of the terrain unit also led to different susceptibility maps (almost 20% spatial mismatch). Maps based on different statistical tools (discriminant analysis vs. logistic regression) differed least (less than 10%). Hence, method and terrain unit proved to be equally important in mapping susceptibility. Model performance was evaluated from the percentages of terrain units that each model correctly classifies, the number of debris-flow falling within the area classified as unstable by each model, and through the metric of ROC curves. Although all techniques implemented yielded results essentially comparable; the discriminant model based on the partition of the study area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.
Articolo in rivista - Articolo scientifico
Alps; Debris flows; Italy; Model evaluation; Statistical and physically-based models; Susceptibility; Terrain units
English
2008
93
3-4
353
378
none
Carrara, A., Crosta, G., Frattini, P. (2008). Comparing models of debris-flow susceptibility in the alpine environment. GEOMORPHOLOGY, 93(3-4), 353-378 [10.1016/j.geomorph.2006.10.033].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/2226
Citazioni
  • Scopus 217
  • ???jsp.display-item.citation.isi??? 197
Social impact