We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.

Conti, D., Rossi, F. (2019). Construction of nice nilpotent Lie groups. JOURNAL OF ALGEBRA, 525, 311-340 [10.1016/j.jalgebra.2019.01.020].

Construction of nice nilpotent Lie groups

Conti, D;Rossi, FA
2019

Abstract

We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n≤9. On every nilpotent Lie algebra of dimension ≤7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases.
Articolo in rivista - Articolo scientifico
Nice Lie algebras; Nilpotent Lie groups;
English
2019
525
311
340
reserved
Conti, D., Rossi, F. (2019). Construction of nice nilpotent Lie groups. JOURNAL OF ALGEBRA, 525, 311-340 [10.1016/j.jalgebra.2019.01.020].
File in questo prodotto:
File Dimensione Formato  
Conti Rossi - Construction of nice nilpotent Lie groups.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 607.49 kB
Formato Adobe PDF
607.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/222545
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
Social impact