This paper presents an experimental study on water drop oblique impacts onto hydrophobic and superhydrophobic tilted surfaces, with the objective of understanding drop impact dynamics and the conditions for drop rebound on low wetting surfaces. Drop impact experiments were performed with millimetric water drops with Weber numbers in the range 25 < We < 585, using different surfaces with advancing contact angles 111° < θ A < 160° and receding contact angles 104° < θ R < 155°. The analysis of oblique impacts onto tilted surfaces led to the definition of six different impact regimes: deposition, rivulet, sliding, rolling, partial rebound, and rebound. For superhydrophobic surfaces, surface tilting generally enhanced drop rebound and shedding from the surface, either by reducing drop rebound time up to 40 % or by allowing drop rebound even when impalement occurred in the vicinity of the impact region. On hydrophobic surfaces, rebound was never observed for tilt angles higher than 45°.

Antonini, C., Villa, F., Marengo, M. (2014). Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. EXPERIMENTS IN FLUIDS, 55(4), 1-9 [10.1007/s00348-014-1713-9].

Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps

Antonini, C
;
2014

Abstract

This paper presents an experimental study on water drop oblique impacts onto hydrophobic and superhydrophobic tilted surfaces, with the objective of understanding drop impact dynamics and the conditions for drop rebound on low wetting surfaces. Drop impact experiments were performed with millimetric water drops with Weber numbers in the range 25 < We < 585, using different surfaces with advancing contact angles 111° < θ A < 160° and receding contact angles 104° < θ R < 155°. The analysis of oblique impacts onto tilted surfaces led to the definition of six different impact regimes: deposition, rivulet, sliding, rolling, partial rebound, and rebound. For superhydrophobic surfaces, surface tilting generally enhanced drop rebound and shedding from the surface, either by reducing drop rebound time up to 40 % or by allowing drop rebound even when impalement occurred in the vicinity of the impact region. On hydrophobic surfaces, rebound was never observed for tilt angles higher than 45°.
Articolo in rivista - Articolo scientifico
oblique impact
English
2014
55
4
1
9
reserved
Antonini, C., Villa, F., Marengo, M. (2014). Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. EXPERIMENTS IN FLUIDS, 55(4), 1-9 [10.1007/s00348-014-1713-9].
File in questo prodotto:
File Dimensione Formato  
Antonini et al (2014) Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces - outcomes timing and rebound maps.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/222162
Citazioni
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 88
Social impact