Nowadays, we live in a Big Data world and many sectors of our economy are guided by data-driven decision processes. Big Data and Business Intelligence applications are facilitated by the MapReduce programming model, while, at infrastructural layer, cloud computing provides flexible and cost-effective solutions to provide on-demand large clusters. Capacity allocation in such systems, meant as the problem of providing computational power to support concurrent MapReduce applications in a cost-effective fashion, represents a challenge of paramount importance. In this paper we lay the foundation for a solution implementing admission control and capacity allocation for MapReduce jobs with a priori deadline guarantees. In particular, shared Hadoop 2.x clusters supporting batch and/or interactive jobs are targeted. We formulate a linear programming model able to minimize cloud resources costs and rejection penalties for the execution of jobs belonging to multiple classes with deadline guarantees. Scalability analyses demonstrated that the proposed method is able to determine the global optimal solution of the linear problem for systems including up to 10,000 classes in less than 1 s.
Malekimajd, M., Ardagna, D., Ciavotta, M., Gianniti, E., Passacantando, M., Rizzi, A. (2018). An optimization framework for the capacity allocation and admission control of MapReduce jobs in cloud systems. THE JOURNAL OF SUPERCOMPUTING, 74(10), 5314-5348 [10.1007/s11227-018-2426-2].
An optimization framework for the capacity allocation and admission control of MapReduce jobs in cloud systems
Ciavotta, M;Passacantando, M;
2018
Abstract
Nowadays, we live in a Big Data world and many sectors of our economy are guided by data-driven decision processes. Big Data and Business Intelligence applications are facilitated by the MapReduce programming model, while, at infrastructural layer, cloud computing provides flexible and cost-effective solutions to provide on-demand large clusters. Capacity allocation in such systems, meant as the problem of providing computational power to support concurrent MapReduce applications in a cost-effective fashion, represents a challenge of paramount importance. In this paper we lay the foundation for a solution implementing admission control and capacity allocation for MapReduce jobs with a priori deadline guarantees. In particular, shared Hadoop 2.x clusters supporting batch and/or interactive jobs are targeted. We formulate a linear programming model able to minimize cloud resources costs and rejection penalties for the execution of jobs belonging to multiple classes with deadline guarantees. Scalability analyses demonstrated that the proposed method is able to determine the global optimal solution of the linear problem for systems including up to 10,000 classes in less than 1 s.File | Dimensione | Formato | |
---|---|---|---|
An_Optimization_Framework_for_the_Capacity_Allocation_and_Admission_Control__of_MapReduce_Jobs_in_Cloud_Systems.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
SUPE2018.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.