Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degrada-tion/inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes

Molinaro, R., Corbo, C., Livingston, M., Evangelopoulos, M., Parodi, A., Boada, C., et al. (2018). Inflammation and Cancer: In Medio Stat Nano. CURRENT MEDICINAL CHEMISTRY, 25(34), 4208-4223 [10.2174/0929867324666170920160030].

Inflammation and Cancer: In Medio Stat Nano

Corbo, C;
2018

Abstract

Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degrada-tion/inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes
Articolo in rivista - Review Essay
inflammation, cancer, nanomedicine
English
2018
25
34
4208
4223
reserved
Molinaro, R., Corbo, C., Livingston, M., Evangelopoulos, M., Parodi, A., Boada, C., et al. (2018). Inflammation and Cancer: In Medio Stat Nano. CURRENT MEDICINAL CHEMISTRY, 25(34), 4208-4223 [10.2174/0929867324666170920160030].
File in questo prodotto:
File Dimensione Formato  
CMC Molinaro Corbo.pdf

Solo gestori archivio

Dimensione 949.97 kB
Formato Adobe PDF
949.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/217979
Citazioni
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 25
Social impact