Continental dust input into the ocean-atmosphere system has significant ramifications for biogeochemical cycles and global climate, yet direct observations of dust deposition in the ocean remain scarce. The long-lived isotope thorium-232 (232Th) is greatly enriched in upper continental crust compared to oceanic crust and mid-ocean ridge basalt-like volcanogenic material. In open ocean sediments, away from fluvial and ice-rafted sources of continental material, 232Th is often assumed to be of predominantly eolian origin. In conjunction with flux normalization based on the particle reactive radioisotope thorium-230 (230Th), 232Th measurements in marine sediments are a promising proxy for dust accumulation in the modern and past ocean. Here we present ThoroMap, a new global data compilation of 230Th-normalized fluxes of 232Th. After careful screening, we derive dust deposition estimates in the global ocean averaged for the late Holocene (0–4 ka) and the Last Glacial Maximum (LGM, 19–23 ka). ThoroMap is compared with dust deposition estimates derived from the Community Climate System Model (CCSM3) and CCSM4, two coupled atmosphere, land, ocean, and sea ice models. Model-data correlation factors are 0.63 (CCSM3) and 0.59 (CCSM4) in the late Holocene and 0.82 (CCSM3) and 0.83 (CCSM4) in the LGM. ThoroMap is the first compilation that is built on a single, specific proxy for dust and that exclusively uses flux-normalization to derive dust deposition rates.

Kienast, S., Winckler, G., Lippold, J., Albani, S., Mahowald, N. (2016). Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap. GLOBAL BIOGEOCHEMICAL CYCLES, 30(10), 1526-1541 [10.1002/2016GB005408].

Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap

Albani, S.;
2016

Abstract

Continental dust input into the ocean-atmosphere system has significant ramifications for biogeochemical cycles and global climate, yet direct observations of dust deposition in the ocean remain scarce. The long-lived isotope thorium-232 (232Th) is greatly enriched in upper continental crust compared to oceanic crust and mid-ocean ridge basalt-like volcanogenic material. In open ocean sediments, away from fluvial and ice-rafted sources of continental material, 232Th is often assumed to be of predominantly eolian origin. In conjunction with flux normalization based on the particle reactive radioisotope thorium-230 (230Th), 232Th measurements in marine sediments are a promising proxy for dust accumulation in the modern and past ocean. Here we present ThoroMap, a new global data compilation of 230Th-normalized fluxes of 232Th. After careful screening, we derive dust deposition estimates in the global ocean averaged for the late Holocene (0–4 ka) and the Last Glacial Maximum (LGM, 19–23 ka). ThoroMap is compared with dust deposition estimates derived from the Community Climate System Model (CCSM3) and CCSM4, two coupled atmosphere, land, ocean, and sea ice models. Model-data correlation factors are 0.63 (CCSM3) and 0.59 (CCSM4) in the late Holocene and 0.82 (CCSM3) and 0.83 (CCSM4) in the LGM. ThoroMap is the first compilation that is built on a single, specific proxy for dust and that exclusively uses flux-normalization to derive dust deposition rates.
Articolo in rivista - Articolo scientifico
continental dust; marine sediments; reconstruction; thorium isotopes; ThoroMap;
continental dust; marine sediments; reconstruction; thorium isotopes; ThoroMap; Global and Planetary Change; Environmental Chemistry; 2300; Atmospheric Science
English
2016
30
10
1526
1541
none
Kienast, S., Winckler, G., Lippold, J., Albani, S., Mahowald, N. (2016). Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap. GLOBAL BIOGEOCHEMICAL CYCLES, 30(10), 1526-1541 [10.1002/2016GB005408].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/217650
Citazioni
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 50
Social impact