We prove that, in general, given a p-harmonic map F: M → N and a convex function H: N → ℝ, the composition, is not p-subharmonic, if p ≠ 2. This answers in the negative an open question arisen from a paper by Lin and Wei. By assuming some rotational symmetry on manifolds and functions, we reduce the problem to an ordinary differential inequality. The key of the proof is an asymptotic estimate for the p-harmonic map under suitable assumptions on the manifolds. © Springer-Verlag 2010.

Veronelli, G. (2010). On p-harmonic maps and convex functions. MANUSCRIPTA MATHEMATICA, 131(3-4), 537-546 [10.1007/s00229-010-0335-7].

On p-harmonic maps and convex functions

Veronelli, Giona
2010

Abstract

We prove that, in general, given a p-harmonic map F: M → N and a convex function H: N → ℝ, the composition, is not p-subharmonic, if p ≠ 2. This answers in the negative an open question arisen from a paper by Lin and Wei. By assuming some rotational symmetry on manifolds and functions, we reduce the problem to an ordinary differential inequality. The key of the proof is an asymptotic estimate for the p-harmonic map under suitable assumptions on the manifolds. © Springer-Verlag 2010.
Articolo in rivista - Articolo scientifico
p-harmonic maps ; convex functions
English
2010
131
3-4
537
546
none
Veronelli, G. (2010). On p-harmonic maps and convex functions. MANUSCRIPTA MATHEMATICA, 131(3-4), 537-546 [10.1007/s00229-010-0335-7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/216766
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact