We present a virtual element method for the Reissner-Mindlin plate bending problem which uses shear strain and deflection as discrete variables without the need of any reduction operator. The proposed method is conforming in [H1(Ω)]2× H2(Ω) and has the advantages of using general polygonal meshes and yielding a direct approximation of the shear strains. The rotations are then obtained by a simple postprocess from the shear strain and deflection. We prove convergence estimates with involved constants that are uniform in the thickness t of the plate. Finally, we report numerical experiments which allow us to assess the performance of the method.
Da Veiga, L., Mora, D., & Rivera, G. (2018). Virtual elements for a shear-deflection formulation of Reissner-Mindlin Plates. MATHEMATICS OF COMPUTATION, 88(315), 149-178 [10.1090/mcom/3331].
Citazione: | Da Veiga, L., Mora, D., & Rivera, G. (2018). Virtual elements for a shear-deflection formulation of Reissner-Mindlin Plates. MATHEMATICS OF COMPUTATION, 88(315), 149-178 [10.1090/mcom/3331]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Presenza di un coautore afferente ad Istituzioni straniere: | Si | |
Titolo: | Virtual elements for a shear-deflection formulation of Reissner-Mindlin Plates | |
Autori: | Da Veiga, L; Mora, D; Rivera, G | |
Autori: | ||
Data di pubblicazione: | 2018 | |
Lingua: | English | |
Rivista: | MATHEMATICS OF COMPUTATION | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/mcom/3331 | |
Appare nelle tipologie: | 01 - Articolo su rivista |