Let R be a discrete valuation ring with residue field of characteristic p > 0. Let K be its fraction field. We prove that any finite and flat R-group scheme, isomorphic to μp2, K on the generic fiber, is the kernel in a short exact sequence which generically coincides with the Kummer sequence. We will explicitly describe and classify such models. In Appendix A X. Caruso shows how to classify models of μp2, K, in the case of unequal characteristic, using the Breuil-Kisin theory. © 2010 Elsevier Inc. All rights reserved.
Tossici, D. (2010). Models of μ_{p^2} over a discrete valuation ring of unequal characteristic. JOURNAL OF ALGEBRA, 323(7), 1908-1957 [10.1016/j.jalgebra.2010.01.012].
Citazione: | Tossici, D. (2010). Models of μ_{p^2} over a discrete valuation ring of unequal characteristic. JOURNAL OF ALGEBRA, 323(7), 1908-1957 [10.1016/j.jalgebra.2010.01.012]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Titolo: | Models of μ_{p^2} over a discrete valuation ring of unequal characteristic | |
Autori: | Tossici, D | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Lingua: | English | |
Rivista: | JOURNAL OF ALGEBRA | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jalgebra.2010.01.012 | |
Appare nelle tipologie: | 01 - Articolo su rivista |