Let R be a discrete valuation ring with residue field of characteristic p > 0. Let K be its fraction field. We prove that any finite and flat R-group scheme, isomorphic to μp2, K on the generic fiber, is the kernel in a short exact sequence which generically coincides with the Kummer sequence. We will explicitly describe and classify such models. In Appendix A X. Caruso shows how to classify models of μp2, K, in the case of unequal characteristic, using the Breuil-Kisin theory. © 2010 Elsevier Inc. All rights reserved.
Tossici, D. (2010). Models of μ_{p^2} over a discrete valuation ring of unequal characteristic. JOURNAL OF ALGEBRA, 323(7), 1908-1957.
Citazione: | Tossici, D. (2010). Models of μ_{p^2} over a discrete valuation ring of unequal characteristic. JOURNAL OF ALGEBRA, 323(7), 1908-1957. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | Models of μ_{p^2} over a discrete valuation ring of unequal characteristic |
Autori: | Tossici, D |
Autori: | |
Data di pubblicazione: | 2010 |
Lingua: | English |
Rivista: | JOURNAL OF ALGEBRA |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jalgebra.2010.01.012 |
Appare nelle tipologie: | 01 - Articolo su rivista |