Since the proposal that excessive glutamatergic stimulation could be responsible for neuronal suffering and death, excitotoxicity and glutamate uptake deficits have been repeatedly confirmed to play a key role in the pathogenesis of different neurological diseases. Therefore, it is conceivable that assessing the glutamatergic system function directly in patients could be extremely useful for early diagnosis, prognostic evaluation, and optimization of the therapy. A possibility is offered by assessing glutamate levels in biological fluid, such as plasma and CSF, where increased levels of this amino acid have been reported in patients affected by stroke, amyotrophic lateral sclerosis (ALS), and AIDS dementia complex. However, the metabolic role of this amino acid acts as a confounding factor, and the possibility of directly assessing glutamatergic functional parameters, such as amino acid reuptake, would probably mirror closely the actual excitotoxic damage operative in each patient. Here we will describe our findings obtained in peripheral ex vivo cells, such as platelets and fibroblasts, both displaying a functional glutamate reuptake system. Consistent with a systemic-impairment assumption, glutamate uptake was shown to be reduced in peripheral cells of Alzheimer's disease, Down syndrome, Parkinson's disease, ALS, and stroke patients. Different systemic factors might be responsible for this phenomenon, including genetic predisposition, oxidative stress, and inflammatory response, raising new, exciting questions about the relevance of their possible interactions for the pathogenesis of neurological disorders.

Tremolizzo, L., Beretta, S., Ferrarese, C. (2004). Peripheral markers of glutamatergic dysfunction in neurological disease: focus on ex vivo tools. CRITICAL REVIEWS IN NEUROBIOLOGY, 16(1-2), 141-146 [10.1615/CritRevNeurobiol.v16.i12.150].

Peripheral markers of glutamatergic dysfunction in neurological disease: focus on ex vivo tools

Tremolizzo, L;Beretta, S;Ferrarese, C
2004

Abstract

Since the proposal that excessive glutamatergic stimulation could be responsible for neuronal suffering and death, excitotoxicity and glutamate uptake deficits have been repeatedly confirmed to play a key role in the pathogenesis of different neurological diseases. Therefore, it is conceivable that assessing the glutamatergic system function directly in patients could be extremely useful for early diagnosis, prognostic evaluation, and optimization of the therapy. A possibility is offered by assessing glutamate levels in biological fluid, such as plasma and CSF, where increased levels of this amino acid have been reported in patients affected by stroke, amyotrophic lateral sclerosis (ALS), and AIDS dementia complex. However, the metabolic role of this amino acid acts as a confounding factor, and the possibility of directly assessing glutamatergic functional parameters, such as amino acid reuptake, would probably mirror closely the actual excitotoxic damage operative in each patient. Here we will describe our findings obtained in peripheral ex vivo cells, such as platelets and fibroblasts, both displaying a functional glutamate reuptake system. Consistent with a systemic-impairment assumption, glutamate uptake was shown to be reduced in peripheral cells of Alzheimer's disease, Down syndrome, Parkinson's disease, ALS, and stroke patients. Different systemic factors might be responsible for this phenomenon, including genetic predisposition, oxidative stress, and inflammatory response, raising new, exciting questions about the relevance of their possible interactions for the pathogenesis of neurological disorders.
Articolo in rivista - Review Essay
excitotoxicity, glutamate uptake, platelets, fibroblasts
English
2004
16
1-2
141
146
none
Tremolizzo, L., Beretta, S., Ferrarese, C. (2004). Peripheral markers of glutamatergic dysfunction in neurological disease: focus on ex vivo tools. CRITICAL REVIEWS IN NEUROBIOLOGY, 16(1-2), 141-146 [10.1615/CritRevNeurobiol.v16.i12.150].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/2064
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
Social impact