In food authenticity studies the central concern is the detection of products that are not what they claim to be. Here, we introduce robustness in a semi-supervised classification rule, to identify non-authentic sub-samples. The approach is based on discriminating observations with the lowest contributions to the overall likelihood, following the impartial trimming established technique. Experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.
Negli studi di autenticità degli alimenti risulta cruciale saper riconoscere prodotti contraffatti. In questo paper si adotta un approccio robusto per modificare una regola di classificazione semi-supervised e poter quindi identificare potenziali adulterazioni. L’approccio basato sulla selezione delle osservazioni che danno minore contributo alla verosimiglianza globale, seguendo tecniche ben note di impartial trimming. Esperimenti su dati reali, artificialmente adulterati, evidenziano l’efficacia del metodo proposto.
Cappozzo, A., Greselin, F., Murphy, T. (2018). Robust Updating Classification Rule with applications in Food Authenticity Studies. In A. Abbruzzo, E. Brentari, M. Chiodi, D. Piacentino (a cura di), Book of short Papers SIS 2018 (pp. 1-6). Pearson.
Robust Updating Classification Rule with applications in Food Authenticity Studies
Cappozzo, A
;Greselin, F;
2018
Abstract
In food authenticity studies the central concern is the detection of products that are not what they claim to be. Here, we introduce robustness in a semi-supervised classification rule, to identify non-authentic sub-samples. The approach is based on discriminating observations with the lowest contributions to the overall likelihood, following the impartial trimming established technique. Experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
2018-08-30_SIS_Greselin_Cappozzo_Murphy_SHORT FINAL.pdf
accesso aperto
Descrizione: Main Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
953.26 kB
Formato
Adobe PDF
|
953.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.