In food authenticity studies the central concern is the detection of products that are not what they claim to be. Here, we introduce robustness in a semi-supervised classification rule, to identify non-authentic sub-samples. The approach is based on discriminating observations with the lowest contributions to the overall likelihood, following the impartial trimming established technique. Experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.

Negli studi di autenticità degli alimenti risulta cruciale saper riconoscere prodotti contraffatti. In questo paper si adotta un approccio robusto per modificare una regola di classificazione semi-supervised e poter quindi identificare potenziali adulterazioni. L’approccio basato sulla selezione delle osservazioni che danno minore contributo alla verosimiglianza globale, seguendo tecniche ben note di impartial trimming. Esperimenti su dati reali, artificialmente adulterati, evidenziano l’efficacia del metodo proposto.

Cappozzo, A., Greselin, F., Murphy, T. (2018). Robust Updating Classification Rule with applications in Food Authenticity Studies. In A. Abbruzzo, E. Brentari, M. Chiodi, D. Piacentino (a cura di), Book of short Papers SIS 2018 (pp. 1-6). Pearson.

Robust Updating Classification Rule with applications in Food Authenticity Studies

Cappozzo, A
;
Greselin, F;
2018

Abstract

Negli studi di autenticità degli alimenti risulta cruciale saper riconoscere prodotti contraffatti. In questo paper si adotta un approccio robusto per modificare una regola di classificazione semi-supervised e poter quindi identificare potenziali adulterazioni. L’approccio basato sulla selezione delle osservazioni che danno minore contributo alla verosimiglianza globale, seguendo tecniche ben note di impartial trimming. Esperimenti su dati reali, artificialmente adulterati, evidenziano l’efficacia del metodo proposto.
Capitolo o saggio
In food authenticity studies the central concern is the detection of products that are not what they claim to be. Here, we introduce robustness in a semi-supervised classification rule, to identify non-authentic sub-samples. The approach is based on discriminating observations with the lowest contributions to the overall likelihood, following the impartial trimming established technique. Experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.
Robust Statistics; Impartial trimming; Model-based classification; Semi-supervised method; Food Authenticity
English
Book of short Papers SIS 2018
9788891910233
Cappozzo, A., Greselin, F., Murphy, T. (2018). Robust Updating Classification Rule with applications in Food Authenticity Studies. In A. Abbruzzo, E. Brentari, M. Chiodi, D. Piacentino (a cura di), Book of short Papers SIS 2018 (pp. 1-6). Pearson.
Cappozzo, A; Greselin, F; Murphy, T
File in questo prodotto:
File Dimensione Formato  
2018-08-30_SIS_Greselin_Cappozzo_Murphy_SHORT FINAL.pdf

accesso aperto

Descrizione: Main Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 953.26 kB
Formato Adobe PDF
953.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/206311
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact