Clinical ions beams for cancer treatment provide maximum energy deposition (Bragg peak (BP)) at the end of their range and practically no dose behind. This enables a more efficient therapeutic option comparing with classical photon-based radiotherapy where maximum energy is deposited at the body interface. Obviously, minimum-error BP detection is, thus, a key aspect of this treatment. This paper investigates a promising detection technique, based on the so-called ionoacoustic effect. The BP energy deposition causes a small (millikelvin) heating of the surrounding volume that in turn induces a pressure variation. This generates a sound signal that can be detected by an acoustic sensor placed at a certain distance from the BP point. Thus, the sound time-of-flight measure aims, with sound speed, to detect the BP position with very high accuracy (<1 mm). This paper presents the results of a complete cross-domain model that starting from proton beam energy provides the induced pressure variation in water, emulates the propagation of sound waves in the medium, and finally, returns a voltage signal whose time evolution determines BP position with an average deviation from effective position of 1% accuracy.
Riva, M., Vallicelli, E., Baschirotto, A., De Matteis, M. (2018). Acoustic Analog Front End for Proton Range Detection in Hadron Therapy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 12(4), 954-962 [10.1109/TBCAS.2018.2828703].
Acoustic Analog Front End for Proton Range Detection in Hadron Therapy
Vallicelli, Elia Arturo;Baschirotto, Andrea;De Matteis, Marcello
2018
Abstract
Clinical ions beams for cancer treatment provide maximum energy deposition (Bragg peak (BP)) at the end of their range and practically no dose behind. This enables a more efficient therapeutic option comparing with classical photon-based radiotherapy where maximum energy is deposited at the body interface. Obviously, minimum-error BP detection is, thus, a key aspect of this treatment. This paper investigates a promising detection technique, based on the so-called ionoacoustic effect. The BP energy deposition causes a small (millikelvin) heating of the surrounding volume that in turn induces a pressure variation. This generates a sound signal that can be detected by an acoustic sensor placed at a certain distance from the BP point. Thus, the sound time-of-flight measure aims, with sound speed, to detect the BP position with very high accuracy (<1 mm). This paper presents the results of a complete cross-domain model that starting from proton beam energy provides the induced pressure variation in water, emulates the propagation of sound waves in the medium, and finally, returns a voltage signal whose time evolution determines BP position with an average deviation from effective position of 1% accuracy.File | Dimensione | Formato | |
---|---|---|---|
AcousticAFE.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
4 MB
Formato
Adobe PDF
|
4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.