We study the dynamical behavior of D-dimensional linear cellular automata over Zm. We provide an easy-to-check necessary and sufficient condition for a D-dimensional linear cellular automata over Zm to be ergodic and topologically transitive. As a byproduct, we get that for linear cellular automata ergodicity is equivalent to topological transitivity. Finally, we prove that for 1-dimensional linear cellular automata over Zm, regularity (denseness of periodic orbits) is equivalent to surjectivity

Cattaneo, G., Formenti, E., Mancini, G., Margara, G. (2000). Ergodicity, transitivity, and regularity for linear cellular automata over Z^m. THEORETICAL COMPUTER SCIENCE, 233(1-2), 147-164 [10.1016/S0304-3975(98)00005-X].

Ergodicity, transitivity, and regularity for linear cellular automata over Z^m

Cattaneo, G;
2000

Abstract

We study the dynamical behavior of D-dimensional linear cellular automata over Zm. We provide an easy-to-check necessary and sufficient condition for a D-dimensional linear cellular automata over Zm to be ergodic and topologically transitive. As a byproduct, we get that for linear cellular automata ergodicity is equivalent to topological transitivity. Finally, we prove that for 1-dimensional linear cellular automata over Zm, regularity (denseness of periodic orbits) is equivalent to surjectivity
Articolo in rivista - Articolo scientifico
ergodicity, transitivity, regularity, linear, cellular, automata
English
2000
233
1-2
147
164
none
Cattaneo, G., Formenti, E., Mancini, G., Margara, G. (2000). Ergodicity, transitivity, and regularity for linear cellular automata over Z^m. THEORETICAL COMPUTER SCIENCE, 233(1-2), 147-164 [10.1016/S0304-3975(98)00005-X].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20493
Citazioni
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 32
Social impact