The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases.

Picciolini, S., Gualerzi, A., Vanna, R., Sguassero, A., Gramatica, F., Bedoni, M., et al. (2018). Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging. ANALYTICAL CHEMISTRY, 90(15), 8873-8880 [10.1021/acs.analchem.8b00941].

Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging

Picciolini, S
;
Masserini, M;
2018

Abstract

The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases.
Articolo in rivista - Articolo scientifico
exosomes, surface plasmon resonance imaging, brain, neurodegenerative diseases
English
2018
90
15
8873
8880
reserved
Picciolini, S., Gualerzi, A., Vanna, R., Sguassero, A., Gramatica, F., Bedoni, M., et al. (2018). Detection and Characterization of Different Brain-Derived Subpopulations of Plasma Exosomes by Surface Plasmon Resonance Imaging. ANALYTICAL CHEMISTRY, 90(15), 8873-8880 [10.1021/acs.analchem.8b00941].
File in questo prodotto:
File Dimensione Formato  
acs.analchem.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/204700
Citazioni
  • Scopus 96
  • ???jsp.display-item.citation.isi??? 92
Social impact