One important complication of diabetes is damage to the peripheral nervous system. However, in spite of the number of studies on human and experimental diabetic neuropathy, the current therapeutic arsenal is meagre. Consequently, the search for substances to protect the nervous system from the degenerative effects of diabetes has high priority in biomedical research. Neuroactive steroids might be interesting since they have been recently identified as promising neuroprotective agents in several models of neurodegeneration. We have assessed whether chronic treatment with progesterone (P), dihydroprogesterone (DHP) or tetrahydroprogesterone (THP) had neuroprotective effects against streptozotocin (STZ)-induced diabetic neuropathy at the neurophysiological, functional, biochemical and neuropathological levels. Using gas chromatography coupled to mass-spectrometry, we found that three months of diabetes markedly lowered P plasma levels in male rats, and chronic treatment with P restored them, with protective effects on peripheral nerves. In the model of STZ-induced of diabetic neuropathy, chronic treatment for 1 month with P, or with its derivatives, DHP and THP, counteracted the impairment of nerve conduction velocity (NCV) and thermal threshold, restored skin innervation density, and improved Na(+),K(+)-ATPase activity and mRNA levels of myelin proteins, such as glycoprotein zero and peripheral myelin protein 22, suggesting that these neuroactive steroids, might be useful protective agents in diabetic neuropathy. Interestingly, different receptors seem to be involved in these effects. Thus, while the expression of myelin proteins and Na(+),K(+)-ATPase activity are only stimulated by P and DHP (i.e. two neuroactive steroids interacting with P receptor, PR), NCV, thermal nociceptive threshold and intra-epidermal nerve fiber (IENF) density are also affected by THP, which interacts with GABA-A receptor. Because, a therapeutic approach with specific synthetic receptor ligands could avoid the typical side effects of steroids, future experiments will be devoted to evaluating the role of PR and GABA-A receptor in these protective effects.

Leonelli, E., Bianchi, R., Cavaletti, G., Caruso, D., Crippa, D., Garcia Segura, L., et al. (2007). Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. NEUROSCIENCE, 144(4), 1293-1304 [10.1016/j.neuroscience.2006.11.014].

Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis

CAVALETTI, GUIDO ANGELO;
2007

Abstract

One important complication of diabetes is damage to the peripheral nervous system. However, in spite of the number of studies on human and experimental diabetic neuropathy, the current therapeutic arsenal is meagre. Consequently, the search for substances to protect the nervous system from the degenerative effects of diabetes has high priority in biomedical research. Neuroactive steroids might be interesting since they have been recently identified as promising neuroprotective agents in several models of neurodegeneration. We have assessed whether chronic treatment with progesterone (P), dihydroprogesterone (DHP) or tetrahydroprogesterone (THP) had neuroprotective effects against streptozotocin (STZ)-induced diabetic neuropathy at the neurophysiological, functional, biochemical and neuropathological levels. Using gas chromatography coupled to mass-spectrometry, we found that three months of diabetes markedly lowered P plasma levels in male rats, and chronic treatment with P restored them, with protective effects on peripheral nerves. In the model of STZ-induced of diabetic neuropathy, chronic treatment for 1 month with P, or with its derivatives, DHP and THP, counteracted the impairment of nerve conduction velocity (NCV) and thermal threshold, restored skin innervation density, and improved Na(+),K(+)-ATPase activity and mRNA levels of myelin proteins, such as glycoprotein zero and peripheral myelin protein 22, suggesting that these neuroactive steroids, might be useful protective agents in diabetic neuropathy. Interestingly, different receptors seem to be involved in these effects. Thus, while the expression of myelin proteins and Na(+),K(+)-ATPase activity are only stimulated by P and DHP (i.e. two neuroactive steroids interacting with P receptor, PR), NCV, thermal nociceptive threshold and intra-epidermal nerve fiber (IENF) density are also affected by THP, which interacts with GABA-A receptor. Because, a therapeutic approach with specific synthetic receptor ligands could avoid the typical side effects of steroids, future experiments will be devoted to evaluating the role of PR and GABA-A receptor in these protective effects.
Articolo in rivista - Articolo scientifico
Treatment Outcome; Male; 20-alpha-Dihydroprogesterone; Diabetic Neuropathies; Progesterone; Pregnanolone; Rats; Peripheral Nerves; Animals; Down-Regulation; Skin; Rats, Sprague-Dawley; Diabetes Mellitus, Experimental; Neural Conduction; Recovery of Function; RNA, Messenger; Neuroprotective Agents; Sodium-Potassium-Exchanging ATPase; Sensory Receptor Cells; Pain Threshold; Receptors, GABA-A; Myelin Proteins
English
23-feb-2007
144
4
1293
1304
none
Leonelli, E., Bianchi, R., Cavaletti, G., Caruso, D., Crippa, D., Garcia Segura, L., et al. (2007). Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. NEUROSCIENCE, 144(4), 1293-1304 [10.1016/j.neuroscience.2006.11.014].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20323
Citazioni
  • Scopus 178
  • ???jsp.display-item.citation.isi??? 158
Social impact