The parabolic integro-differential equation under investigation, $$ {\beta}\partial_t u = Au - m * Au + {\chi}\tag1 $$(1) subject to suitable initial and boundary conditions (BC), represents linear, non-homogeneous diffusion with memory kernel $m = m[t]$, in the space-time domain $Q$.

Crosta, G. (2010). Mathematical Review of MR2558302 "A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination." by Janno, Jaan; Kasemets, Kairi. MATHEMATICAL REVIEWS.

Mathematical Review of MR2558302 "A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination." by Janno, Jaan; Kasemets, Kairi

CROSTA, GIOVANNI FRANCO FILIPPO
2010

Abstract

The parabolic integro-differential equation under investigation, $$ {\beta}\partial_t u = Au - m * Au + {\chi}\tag1 $$(1) subject to suitable initial and boundary conditions (BC), represents linear, non-homogeneous diffusion with memory kernel $m = m[t]$, in the space-time domain $Q$.
Recensione in rivista
memory kernel; parabolic integro differential equation; positivity principle; inverse problem; final overdetermination
English
2010
none
Crosta, G. (2010). Mathematical Review of MR2558302 "A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination." by Janno, Jaan; Kasemets, Kairi. MATHEMATICAL REVIEWS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20221
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact