QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of bolometric detectors with the control of systematic effects typical of interferometers. QUBIC will perform sky observations in polarization, in two frequency bands centered at 150 and 220 GHz, with two kilo-pixel focal plane arrays of NbSi Transition-Edge Sensors (TES) cooled down to 350 mK. A subset of the QUBIC instrument, the so called QUBIC Technological Demonstrator (TD), with a reduced number of detectors with respect to the full instrument, will be deployed and commissioned before the end of 2018. The voltage-biased TES are read out with Time Domain Multiplexing and an unprecedented multiplexing (MUX) factor equal to 128. This MUX factor is reached with two-stage multiplexing: a traditional one exploiting Superconducting QUantum Interference Devices (SQUIDs) at 1K and a novel SiGe Application-Specific Integrated Circuit (ASIC) at 60 K. The former provides a MUX factor of 32, while the latter provides a further 4. Each TES array is composed of 256 detectors and read out with four modules of 32 SQUIDs and two ASICs. A custom software synchronizes and manages the readout and detector operation, while the TES are sampled at 780 Hz (100kHz/128 MUX rate). In this work we present the experimental characterization of the QUBIC TES arrays and their multiplexing readout chain, including time constant, critical temperature, and noise properties.

Salatino, M., Suarez, F., Bennett, D., Murphy, J., Ade, P., Thermeau, J., et al. (2018). Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment. In Proceedings Volume 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX (pp.140). SPIE [10.1117/12.2312080].

Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment

Zannoni, Mario;Passerini, Andrea;Gervasi, Massimo;Coppi, Gabriele;Baù, Alessandro;Banfi, Stefano;
2018

Abstract

QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of bolometric detectors with the control of systematic effects typical of interferometers. QUBIC will perform sky observations in polarization, in two frequency bands centered at 150 and 220 GHz, with two kilo-pixel focal plane arrays of NbSi Transition-Edge Sensors (TES) cooled down to 350 mK. A subset of the QUBIC instrument, the so called QUBIC Technological Demonstrator (TD), with a reduced number of detectors with respect to the full instrument, will be deployed and commissioned before the end of 2018. The voltage-biased TES are read out with Time Domain Multiplexing and an unprecedented multiplexing (MUX) factor equal to 128. This MUX factor is reached with two-stage multiplexing: a traditional one exploiting Superconducting QUantum Interference Devices (SQUIDs) at 1K and a novel SiGe Application-Specific Integrated Circuit (ASIC) at 60 K. The former provides a MUX factor of 32, while the latter provides a further 4. Each TES array is composed of 256 detectors and read out with four modules of 32 SQUIDs and two ASICs. A custom software synchronizes and manages the readout and detector operation, while the TES are sampled at 780 Hz (100kHz/128 MUX rate). In this work we present the experimental characterization of the QUBIC TES arrays and their multiplexing readout chain, including time constant, critical temperature, and noise properties.
Si
slide + paper
Scientifica
Millimeter, Submillimeter, Far-Infrared, Detectors, Instrumentation, Cosmic Microwave Background
English
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX JUN 12-15
978-151061969-2
Salatino, M., Suarez, F., Bennett, D., Murphy, J., Ade, P., Thermeau, J., et al. (2018). Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment. In Proceedings Volume 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX (pp.140). SPIE [10.1117/12.2312080].
Salatino, M; Suarez, F; Bennett, D; Murphy, J; Ade, P; Thermeau, J; Zullo, A; Zannoni, M; Wicek, F; Watson, B; Vittorio, N; Viganò, D; Vanneste, S; Tucker, G; Tucker, C; Truongcanh, V; Tristam, M; Timbie, P; Tartari, A; Stolpovskiy, M; Spinelli, S; Scully, S; Scóccola, C; Schillaci, A; Romero, G; Ringegni, P; Puddu, R; Polenta, G; Pisano, G; Piccirillo, L; Piacentini, F; Pezzotta, F; Perdereau, O; Perbost, C; Pelosi, A; Pastoriza, H; Passerini, A; Pajot, F; Paiella, A; Olivieri, E; O'Sullivan, C; Murphy, J; Mundo, L; Mennella, A; Melhuish, S; Mele, L; Medina, M; Mcculloch, M; May, A; Mattei, A; Masi, S; Maffei, B; Luterstein, R; Lukovic, V; Lowitz, A; Louis, T; Loucatos, S; Lamagna, L; Kristukat, C; Korotkov, A; Kaplan, J; Jules, E; Incardona, F; Haynes, V; Harari, D; Hamilton, J; Guerrard, E; Grandsire, L; Gradziel, M; González, M; Gómez Berisso, M; Giraud-Héraud, Y; Giard, M; Gervasi, M; Gayer, D; Gault, A; Gaspard, M; Garrido, X; García, B; Gamboa, M; Franceschet, C; Fasciszewski, A; Etchegoyen, A; Dumoulin, L; Di Donato, A; De Petris, M; De Leo, M; de Gasperis, G; de Bernardis, P; D’Alessandro, G; D'Agostino, R; Couchot, F; Coppolecchia, A; Coppi, G; Columbro, F; Charlassier, R; Chanial, P; Cavaliere, F; Buzzelli, A; Buzi, D; Burke, D; Bunn, E; Bréelle, E; Bordier, G; Bonis, J; Bonaparte, J; Bleurvacq, N; Bigot-Sazy, M; Bersanelli, M; Bernard, J; Bergé, L; Baù, A; Battistelli, E; Battaglia, P; Barbarán, G; Banfi, S; Aumont, J; Auguste, D; Amico, G; Voisin, F; Henrot-Versillé, S; Torchinsky, S; Rambaud, D; Prêle, D; Piat, M; Montier, L; Marty, W; Marnieros, S; Maestre, S; Hoang, D; Chapron, C; Bélier, B
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/201355
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
Social impact