We define and study the Airy operator on star graphs. The Airy operator is a third-order differential operator arising in different contexts, but our main concern is related to its role as the linear part of the Korteweg- de Vries equation, usually studied on a line or a half-line. The first problem treated and solved is its correct definition, with different characterizations, as a skew-adjoint operator on a star graph, a set of lines connecting at a common vertex representing, for example, a network of branching channels. A necessary condition turns out to be that the graph is balanced, i.e., there is the same number of ingoing and outgoing edges at the vertex. The simplest example is that of the line with a point interaction at the vertex. In these cases the Airy dynamics is given by a unitary or isometric (in the real case) group. In particular the analysis provides the complete classification of boundary conditions giving momentum (i.e., L2-norm of the solution) preserving evolution on the graph. A second more general problem solved here is the characterization of conditions under which the Airy operator generates a contraction semigroup. In this case unbalanced star graphs are allowed. In both unitary and contraction dynamics, restrictions on admissible boundary conditions occur if conservation of mass (i.e., integral of the solution) is further imposed. The above well-posedness results can be considered preliminary to the analysis of nonlinear wave propagation on branching structures.

Mugnolo, D., Noja, D., Seifert, C. (2018). Airy-type evolution equations on star graphs. ANALYSIS & PDE, 11(7), 1625-1652 [10.2140/apde.2018.11.1625].

Airy-type evolution equations on star graphs

Noja, D;
2018

Abstract

We define and study the Airy operator on star graphs. The Airy operator is a third-order differential operator arising in different contexts, but our main concern is related to its role as the linear part of the Korteweg- de Vries equation, usually studied on a line or a half-line. The first problem treated and solved is its correct definition, with different characterizations, as a skew-adjoint operator on a star graph, a set of lines connecting at a common vertex representing, for example, a network of branching channels. A necessary condition turns out to be that the graph is balanced, i.e., there is the same number of ingoing and outgoing edges at the vertex. The simplest example is that of the line with a point interaction at the vertex. In these cases the Airy dynamics is given by a unitary or isometric (in the real case) group. In particular the analysis provides the complete classification of boundary conditions giving momentum (i.e., L2-norm of the solution) preserving evolution on the graph. A second more general problem solved here is the characterization of conditions under which the Airy operator generates a contraction semigroup. In this case unbalanced star graphs are allowed. In both unitary and contraction dynamics, restrictions on admissible boundary conditions occur if conservation of mass (i.e., integral of the solution) is further imposed. The above well-posedness results can be considered preliminary to the analysis of nonlinear wave propagation on branching structures.
Articolo in rivista - Articolo scientifico
Airy operator; KdV equation; Krein spaces; Quantum graphs; Third-order differential operators; Analysis; Numerical Analysis; Applied Mathematics
English
mag-2018
2018
11
7
1625
1652
reserved
Mugnolo, D., Noja, D., Seifert, C. (2018). Airy-type evolution equations on star graphs. ANALYSIS & PDE, 11(7), 1625-1652 [10.2140/apde.2018.11.1625].
File in questo prodotto:
File Dimensione Formato  
Mugnolo-2018-Analysis PDE-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/200955
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
Social impact