In this paper we prove two theorems concerning the generation of a finite exceptional group of Lie-type G(F). The first is: there is a semisimple element s such that for 'nearly all' elements x is-an-element-of G(F) the elements s and x generate the group G(F). The second theorem we prove is: if G is a finite simple exceptional group of Lie-type not of type E6 or 2E6, then it is generated by three involutions

Weigel, T. (1992). Generation of exceptional groups of Lie-type. GEOMETRIAE DEDICATA, 41(1), 63-87 [10.1007/BF00181543].

Generation of exceptional groups of Lie-type

Weigel, TS
1992

Abstract

In this paper we prove two theorems concerning the generation of a finite exceptional group of Lie-type G(F). The first is: there is a semisimple element s such that for 'nearly all' elements x is-an-element-of G(F) the elements s and x generate the group G(F). The second theorem we prove is: if G is a finite simple exceptional group of Lie-type not of type E6 or 2E6, then it is generated by three involutions
Articolo in rivista - Articolo scientifico
Semisimple element; Maximal torus; Maximal subgroups; Finite simple exceptional group of Lie type; Generated by three involutions
English
1992
41
1
63
87
none
Weigel, T. (1992). Generation of exceptional groups of Lie-type. GEOMETRIAE DEDICATA, 41(1), 63-87 [10.1007/BF00181543].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20075
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
Social impact