This paper presents a necessary and sufficient condition on the convex function f in order that continuous solutions to minimize ∫ f(∥∇u(x)∥)dx on u0 + W01,1(Ω) satisfy a Strong Maximum Principle on any open connected Ω.

Cellina, A. (2002). On the strong maximum principle. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 130(2), 413-418 [10.1090/S0002-9939-01-06104-4].

On the strong maximum principle

Cellina, A
2002

Abstract

This paper presents a necessary and sufficient condition on the convex function f in order that continuous solutions to minimize ∫ f(∥∇u(x)∥)dx on u0 + W01,1(Ω) satisfy a Strong Maximum Principle on any open connected Ω.
Articolo in rivista - Articolo scientifico
Comparison theorem; Subdifferential
English
2002
130
2
413
418
none
Cellina, A. (2002). On the strong maximum principle. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 130(2), 413-418 [10.1090/S0002-9939-01-06104-4].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/19677
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
Social impact