We show that the functional I(x)=∫0 Tg(t,x(t))dt+∫0 Th(t,x′(t))dtattains a minimum under the condition that g be concave in x.

Cellina, A., Colombo, G. (1990). On a classical problem of the calculus of variations without convexity assumptions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 7(2), 97-106 [10.1016/S0294-1449(16)30306-7].

On a classical problem of the calculus of variations without convexity assumptions

CELLINA, ARRIGO;
1990

Abstract

We show that the functional I(x)=∫0 Tg(t,x(t))dt+∫0 Th(t,x′(t))dtattains a minimum under the condition that g be concave in x.
Articolo in rivista - Articolo scientifico
49 A 05; Calculus of variations; convex functionals; normal integrals
English
1990
7
2
97
106
none
Cellina, A., Colombo, G. (1990). On a classical problem of the calculus of variations without convexity assumptions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 7(2), 97-106 [10.1016/S0294-1449(16)30306-7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/19634
Citazioni
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 76
Social impact