Objective: During hypoxia, hepcidin expression is inhibited to allow iron mobilization to sustain erythropoietic expansion. We analyzed molecular mechanisms underlying hypoxia-induced hepcidin inhibition in an in vivo model of acute hypoxia. Methods: Mice were kept under normal or hypoxic conditions for 6 hours and 15 hours and treated with α-PDGF-BB antibody or PDGF-BB receptor inhibitor. Blood, liver, spleen, and bone marrow were collected to extract RNA and protein or to quantify EPO and PDGF-BB. mRNA and protein levels were assessed by RT-PCR and Western blot. Results: Hepcidin was strongly inhibited at 15 hours, and this downregulation followed erythropoiesis activation and upregulation of several growth factors. PDGF-BB, erythroferrone, GDF15, and TWSG1 were upregulated by hypoxia in the bone marrow, but not in spleen or liver. Inactivation of PDGF-BB or its receptor suppressed the hypoxia-induced hepcidin inhibition. Conclusion: Spleen and liver are not involved in the early stages of hypoxia-induced hepcidin downregulation. Our data support the role of PDGF-BB and probably also of erythroferrone in the recruitment of iron for erythropoiesis in the hypoxia setting. The rapid normalization of all the erythroid factors against persistent hepcidin suppression suggests that other signals are involved that should be clarified in future studies.
Ravasi, G., Pelucchi, S., Buoli Comani, G., Greni, F., Mariani, R., Pelloni, I., et al. (2018). Hepcidin regulation in a mouse model of acute hypoxia. EUROPEAN JOURNAL OF HAEMATOLOGY, 100(6), 636-643 [10.1111/ejh.13062].
Hepcidin regulation in a mouse model of acute hypoxia
Ravasi, GiuliaPrimo
;Pelucchi, SaraSecondo
;Buoli Comani, Gaia;Greni, Federico;Mariani, Raffaella;Bombelli, Silvia;Perego, Roberto;Barisani, DonatellaPenultimo
;Piperno, Alberto
Ultimo
2018
Abstract
Objective: During hypoxia, hepcidin expression is inhibited to allow iron mobilization to sustain erythropoietic expansion. We analyzed molecular mechanisms underlying hypoxia-induced hepcidin inhibition in an in vivo model of acute hypoxia. Methods: Mice were kept under normal or hypoxic conditions for 6 hours and 15 hours and treated with α-PDGF-BB antibody or PDGF-BB receptor inhibitor. Blood, liver, spleen, and bone marrow were collected to extract RNA and protein or to quantify EPO and PDGF-BB. mRNA and protein levels were assessed by RT-PCR and Western blot. Results: Hepcidin was strongly inhibited at 15 hours, and this downregulation followed erythropoiesis activation and upregulation of several growth factors. PDGF-BB, erythroferrone, GDF15, and TWSG1 were upregulated by hypoxia in the bone marrow, but not in spleen or liver. Inactivation of PDGF-BB or its receptor suppressed the hypoxia-induced hepcidin inhibition. Conclusion: Spleen and liver are not involved in the early stages of hypoxia-induced hepcidin downregulation. Our data support the role of PDGF-BB and probably also of erythroferrone in the recruitment of iron for erythropoiesis in the hypoxia setting. The rapid normalization of all the erythroid factors against persistent hepcidin suppression suggests that other signals are involved that should be clarified in future studies.File | Dimensione | Formato | |
---|---|---|---|
Ravasi-2018-Eur J Haematol-VoR.pdf
Solo gestori archivio
Descrizione: Original Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
411.94 kB
Formato
Adobe PDF
|
411.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ravasi-2018-Eur J Haematol-AAM.pdf
accesso aperto
Descrizione: Original Article
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Altro
Dimensione
393.34 kB
Formato
Adobe PDF
|
393.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.